Constraining the production mechanism of light (anti-)nuclei in small systems with ALICE at the LHC

Luca Barioglio
University and INFN - Torino
on behalf of the ALICE Collaboration
Outline

- Phenomenological models
 - The *statistical hadronisation* model
 - The *coalescence* model
Outline

• Phenomenological models
 ‣ The statistical hadronisation model
 ‣ The coalescence model

• The ALICE experiment
 ‣ Identification of nuclei
Outline

- Phenomenological models
 - The **statistical hadronisation** model
 - The **coalescence** model
- The **ALICE** experiment
 - **Identification** of nuclei
- **(Anti-)nuclei** production:
 - p_T spectra in pp and p-Pb collisions
Outline

• Phenomenological models
 ‣ The **statistical hadronisation** model
 ‣ The **coalescence** model

• The **ALICE** experiment
 ‣ **Identification** of nuclei

• (Anti-)nuclei production:
 ‣ p_T **spectra** in pp and p-Pb collisions

• Testing the models
 ‣ Coalescence parameter B_A vs multiplicity
 ‣ d/p and $^3\text{He}/p$ vs multiplicity
Nuclear matter production

• Light (anti-)nuclei are abundantly produced at the LHC in pp, p-Pb and Pb-Pb collisions

• The production mechanisms of light (anti-)nuclei in high-energy physics are still not completely understood
 - light nuclei are characterised by a low binding energy ($E_B \sim 1$ MeV) with respect to the kinetic freeze-out temperature ($T_{fo} \sim 100$ MeV)

• Two classes of models are available:
 - the statistical hadronisation model
 - the coalescence model
The Statistical Hadronisation Model (SHM)

- It assumes hadron abundances from **statistical equilibrium** at the **chemical freeze-out**

- The chemical freeze-out temperature \((T_{ch}) \) is a key parameter:
 \[
 dN/dy \propto \exp\left(-\frac{m}{T_{ch}}\right)
 \]

- Large reaction volume \((VT^3 > 1) \) in Pb-Pb collisions
 - **grand canonical ensemble**

- Production yields \(dN/dy \) in central Pb-Pb collisions described over a wide range of \(dN/dy \) (**7 orders of magnitude**), including nuclei

- In **small systems** \((VT^3 < 1) \) a local conservation of quantum numbers \((S, Q \text{ and } B) \) is necessary
 - **canonical ensemble**
The coalescence model

- Nucleons that are close in the phase space at the freeze-out can form a nucleus via coalescence
- The key concept is the overlap between the nucleus wavefunction and the phase space of the nucleons
- The main parameter of the coalescence is the B_A, defined as:

$$B_A = \frac{E_A \frac{d^3N_A}{d^3p_A}}{\left(E_p \frac{d^3N_p}{d^3p_p} \right)} A$$

where:
- A is the mass number of the nucleus
- $p_p = p_A / A$

- B_A is related to the probability to form a nucleus via coalescence

The ALICE experiment

- General purpose heavy-ion experiment
- 19 different sub-systems
- Excellent particle identification (PID)
- Most suited LHC experiment for studying the production of nuclei

Inner Tracking System
- Tracking and Vertex reconstruction
 - $\sigma_{DCA_{xy}} < 100 \, \mu m$ for $p_T > 0.5$ GeV/c in Pb-Pb
 - Separation of primary and secondary nuclei (coming from material knock-out)

V0
- Multiplicity/centrality determination
• Tracking
• PID via dE/dx measurement
 ‣ $\sigma_{dE/dx} \sim 5.5\%$ (in pp collisions)
 ‣ $\sigma_{dE/dx} \sim 7\%$ (in Pb-Pb collisions)
• Raw yields extracted for each p_T bin from the $n\sigma$ distributions
• 3He and 4He well separated
PID with the Time Of Flight

- **PID via β measurement**
 - $\sigma_{\text{TOF-PID}} \sim 60$ ps in Pb-Pb collisions
 - $\sigma_{\text{TOF-PID}} \sim 70$ ps in pp collisions (lower precision on event collision time)

- Raw yields extracted for each p_T bin from the TOF mass spectra distribution

PID via β measurement

$\sigma_{\text{TOF-PID}} \sim 60$ ps in Pb-Pb collisions

$\sigma_{\text{TOF-PID}} \sim 70$ ps in pp collisions (lower precision on event collision time)

Raw yields extracted for each p_T bin from the TOF mass spectra distribution
• **PID via β measurement**

 - $\sigma_{\text{TOF-PID}} \sim 60 \text{ ps}$ in Pb-Pb collisions
 - $\sigma_{\text{TOF-PID}} \sim 70 \text{ ps}$ in pp collisions
 (lower precision on event collision time)

• Raw yields extracted for each p_T bin from the TOF mass spectra distribution
• **TRD** can be used as **trigger** for **nuclei**
 - Only events with a nucleus candidate are selected → **background reduced**
• With **TRD** trigger it is possible to measure:
 • \(^3\text{H}\) in \(pp\) collisions
 • (anti-)\(^4\text{He}\) in \(pp\) collisions (in the future)

ALICE Performance
- \(^3\text{H} \rightarrow ^3\text{He} + \pi^-\)
- \(\text{pp } \sqrt{s} = 13\ \text{TeV}\)
- \(L_{\text{int}}^{\text{TRD}} = 2.0\ \text{pb}^{-1}\)
- \(L_{\text{int}}^{\text{V0mult}} = 7.7\ \text{pb}^{-1}\)
- \(L_{\text{int}}^{\text{SPDmult}} = 0.9\ \text{pb}^{-1}\)
3He spectra in p-Pb and pp

- 3He p_T spectra measured in pp, p-Pb, and Pb-Pb collisions
 - A comparison between different systems can be performed

pp, $\sqrt{s} = 13$ TeV

p-Pb, $\sqrt{s_{NN}} = 5$ TeV
• 3H p_T spectra measured in p-Pb collisions

• Comparison with 3He spectra is a cross-check for the isospin-invariance in the production mechanisms

• 3H p_T spectra measured also in Pb-Pb collisions

 • see Esther's talk:

 “New results on light (anti-)(hyper-)nuclei production and hypertriton lifetime in Pb-Pb collisions at the LHC”

 - Collective dynamics II session
 - on 05.10.2019 at 15:40
• $^3\text{H} \, p_T$ spectra measured in p-Pb collisions

• Comparison with ^3He spectra is a cross-check for the isospin-invariance in the production mechanisms

• $^3\text{H} \, p_T$ spectra measured also in Pb-Pb collisions

 ‣ see Esther’s talk:

 “New results on light (anti-)(hyper-)nuclei production and hypertriton lifetime in Pb-Pb collisions at the LHC”

 - Collective dynamics II session
 - on 05.10.2019 at 15:40
Deuteron in pp and p-Pb

ALICE Preliminary
deuterons, pp, $\sqrt{s} = 5$ TeV

\[
\left\langle \frac{dN_{\text{ch}}}{d\eta_{\text{lab}}} \right\rangle = 5.49
\]

\[
\left\langle \frac{dN_{\text{ch}}}{d\eta_{\text{lab}}} \right\rangle = 18.45
\]

Deuteron p_T spectra have been measured in pp, p-Pb and Pb-Pb collisions

- Comparison with proton spectra → constrain to production mechanisms

arXiv:1906.03136 [nucl-ex]
• The **probability** to form a nucleus via coalescence can be quantified by the **coalescence parameter** B_A

• According to **simple coalescence** predictions, the B_A is **flat in p_T**

 - Simple coalescence **does not describe** the behaviour observed in **Pb-Pb** collisions

• Moving from central to peripheral collisions (i.e. towards **lower multiplicities**), the rise in p_T becomes milder

The coalescence parameter B_A

![Graph showing B_2 vs. p_T/A for different multiplicities and collision energies.](attachment:image.png)

Pb-Pb, $\sqrt{s_{NN}} = 5$ TeV

- B_2 values for different centrality classes are shown.
- The B_2 values decrease with increasing p_T for each centrality class.

ALICE Preliminary

deuterons, $|y| < 0.5$
• In \textit{pp} collisions, the B_2 is flat in p_T, in agreement with the \textbf{simple coalescence} model.
The coalescence parameter B_3

- B_3 has also been measured in pp and in p-Pb collisions
- Comparison of the B_3 in different collision systems and at different multiplicities
 - Dependence of the coalescent production on the system size

B_3 has also been measured in pp and in p-Pb collisions.

Comparison of the B_3 in different collision systems and at different multiplicities.

- Dependence of the coalescent production on the system size
• B_3 has also been measured in pp and in p-Pb collisions

• Comparison of the B_3 in different collision systems and at different multiplicities

 ▸ Dependence of the coalescent production on the system size

\[B_3 (\text{GeV}^4/c^6) \]

\[p$-$Pb, \sqrt{s_{NN}} = 5 \text{ TeV} \]

ALICE

V0A Multiplicity Classes

- 0–10%
- 10–20% (x2)
- 20–40% (x4)
- 40–100% (x8)
- Minimum-bias (x16)

• B_3 evolves smoothly with multiplicity, regardless of the collision system:

- B_3 coalesc., T^3He = 2.48 fm
- SHM + blast-wave (ALICE πKp)
- fit to HBT radii
- GC GSI-Heid. ($T = 156$ MeV)
- constrained to ALICE B_2
- CSM ($T = 155$ MeV)

ALICE Preliminary
- Pb-Pb $\sqrt{s_{NN}} = 2.76$ TeV, PRC 93 (2016) 2, 024917
- p-Pb $\sqrt{s_{NN}} = 5.02$ TeV, arXiv:1910.14401
- pp $\sqrt{s} = 7$ TeV ($p_x/A = 0.8$ GeV/c), PRC 97 (2018) 2, 024615
- pp $\sqrt{s} = 13$ TeV
- $p_x/A = 0.90$ GeV/c
• B_3 evolves **smoothly** with **multiplicity**, regardless of the collision system:
 ▶ production mechanism depending only on the system size
- B_3 evolves smoothly with multiplicity, regardless of the collision system:
 - production mechanism depending only on the system size
- Through the coalescence model it is possible to predict the B_A as a function of the system volume, parameterised from the $dN/d\eta$
- B_3 evolves smoothly with multiplicity, regardless of the collision system:
 - production mechanism depending only on the system size
- Through the coalescence model it is possible to predict the B_A as a function of the system volume, parameterised from the $dN/d\eta$
- Two regimes observed:
• B_3 evolves smoothly with multiplicity, regardless of the collision system:
 ‣ production mechanism depending only on the system size

• Through the coalescence model it is possible to predict the B_3 as a function of the system volume, parameterised from the $dN/d\eta$

• Two regimes observed:
 1. flat: the system size is smaller than the nucleus size

Multiplicty dependence of B_3
Multiplicity dependence of B_3

- B_3 evolves **smoothly** with multiplicity, regardless of the collision system:
 - production mechanism depending only on the system size

- Through the coalescence model it is possible to predict the B_A as a function of the **system volume**, parameterised from the $dN/d\eta$

- Two regimes observed:
 1. flat: the system size is smaller than the nucleus size
 2. decreasing: the system size is larger than the nucleus size
- Also B_2 shows a smooth evolution with multiplicity
- B_2 can be predicted as a function of the system volume, parameterised from $dN/d\eta$
- Two regimes observed:
 1. **flat**: the system size is smaller than the deuteron size
 2. **decreasing**: the system size is larger than the deuteron size
• d/p ratio evolves **smoothly** with multiplicity, regardless of the collision system:

 ▶ production mechanism depending only on the system size
• d/p ratio evolves smoothly with multiplicity, regardless of the collision system:
 ▸ production mechanism depending only on the system size
• Two different regimes:
• d/p ratio evolves **smoothly** with multiplicity, regardless of the collision system:
 ▶ production mechanism depending only on the system size

• Two different regimes:
 1. increasing:
 - Thermal model: **canonical suppression**
 - Coalescence: **small phase space**
• d/p ratio evolves **smoothly** with multiplicity, regardless of the collision system:

 ▶ production mechanism depending only on the system size

• Two different regimes:

 1. **increasing**:
 • Thermal model: **canonical suppression**
 • Coalescence: **small phase space**
 2. **flat**: at high multiplicity there is no dependence of the ratio on the multiplicity, in agreement with the predictions of the **thermal model** and coalescence
Also for $^3\text{He}/p$ we see a smooth evolution with the multiplicity, regardless of the collision system.

Two kinds of coalescence:

- **2-body** coalescence
- **3-body** coalescence

As for d/p, two different regimes:

1. **increasing:**
 - Thermal model: **canonical suppression**
 - Coalescence: **small phase space**

2. **flat:** in agreement with both models

\[\text{ALICE Preliminary} \]

- $2 \cdot \frac{^3\text{He}}{(p + \bar{p})}$, Pb–Pb \[\sqrt{s_{\text{NN}}} = 2.76 \text{ TeV} (|y_{\text{cms}}| < 0.5) \text{, PRC 93 (2016) 2, 024917} \]
- $2 \cdot \frac{^3\text{He}}{(p + \bar{p})}$, Pb–Pb \[\sqrt{s_{\text{NN}}} = 5.02 \text{ TeV} (|y_{\text{cms}}| < 0.5) \]
- $2 \cdot \frac{^3\text{H}}{(p + \bar{p})}$, Pb–Pb \[\sqrt{s_{\text{NN}}} = 5.02 \text{ TeV} (|y_{\text{cms}}| < 0.5) \]
- $(^3\text{He} + ^3\text{He})/(p + \bar{p})$, p–Pb \[\sqrt{s_{\text{NN}}} = 5.02 \text{ TeV} (|y_{\text{cms}}| < 0.5) \text{, arXiv:1910.14401} \]
- $(^3\text{H} + ^3\text{H})/(p + \bar{p})$, p–Pb \[\sqrt{s_{\text{NN}}} = 5.02 \text{ TeV} (|y_{\text{cms}}| < 0.5) \text{, arXiv:1910.14401} \]
- $2 \cdot \frac{^3\text{He}}{(p + \bar{p})}$, pp \[\sqrt{s} = 7 \text{ TeV} (|y_{\text{cms}}| < 0.5) \text{, PRC 97 (2018) 2, 024615} \]
- $(^3\text{He} + ^3\text{He})/(p + \bar{p})$, pp \[\sqrt{s} = 13 \text{ TeV} (|y_{\text{cms}}| < 0.5) \]

\[\text{CSM (Thermal-FIST), PLB 785 (2018) 171-174} \]
- $T = 155 \text{ MeV}$, $V_c = dV/dy$
- $T = 155 \text{ MeV}$, $V_c = 3 \ dV/dy$

luca.barioglio@cern.ch

Quark Matter - Wuhan 2019

19
Conclusions

- ALICE has measured the production of light (anti-)nuclei in different collision systems and at different energies.

- The measurements of B_A, d/p and $^3\text{He}/p$ as a function of multiplicity suggest a common production mechanism that depends only on the system size.

- The coalescence model can explain both the evolution of B_A, d/p and $^3\text{He}/p$ with multiplicity.

- With a canonical approach for small systems, also the thermal model can describe the evolution of d/p and $^3\text{He}/p$ with multiplicity.

- More data and more precise model calculations are needed to understand the production of light (anti-)nuclei in high-energy hadron collisions.
Conclusions

• ALICE has measured the production of light (anti-)nuclei in different collision systems and at different energies.

• The measurements of B_A, d/p and 3He/p as a function of multiplicity suggest a common production mechanism that depends only on the system size.

• The coalescence model can explain both the evolution of B_A, d/p and 3He/p with multiplicity.

• With a canonical approach for small systems, also the thermal model can describe the evolution of d/p and 3He/p with multiplicity.

• More data and more precise model calculations are needed to understand the production of light (anti-)nuclei in high-energy hadron collisions.

Thanks for your attention!
Backup
The centrality of a Pb-Pb collision is described by the impact parameter b.

The estimation of the impact parameter is obtained from the track multiplicity, fitting the data with the predictions of the **Glauber model**.

\[P_{\mu,k} \times \left[f \frac{N_{\text{part}}}{N_{\text{coll}}} + (1-f)N_{\text{coll}} \right] \]

$P_{\mu,k}$: a parameter in the model

N_{part}: number of participants

N_{coll}: number of collisions

f: a fraction

μ, k: model parameters

The diagram shows the centrality distribution for Pb-Pb collisions at $s_{NN} = 5.02$ TeV.

- **Data** points show the measured event yields.
- **NBD-Glauber fit** indicates the model prediction.
- The inset highlights the centrality ranges:
 - 80-90%
 - 70-80%
 - 60-70%
 - 50-60%
 - 40-50%
 - 30-40%
 - 20-30%
 - 10-20%
 - 7.5-10%
 - 5-7.5%
 - 2.5-5%
 - 0.2-5%

ALICE, ALICE-PUBLIC-2015-008 (2015)
• At the LHC energies the antiproton/proton ratio is compatible with the unity:

 ‣ the regime of nuclear transparency is reached: evanescent baryochemical potential ($\mu_B \sim 0$) in the central rapidity region

• Both thermal and coalescence models predict for a nucleus X with mass number A:
 \[\frac{\overline{X}}{X} \approx \left(\frac{\overline{p}}{p} \right)^A \]

• The measurements of \overline{d}/d and $^{3}\text{He}/^{3}\text{He}$ in Pb-Pb, p-Pb and pp collisions confirm the predictions:

 ‣ matter and anti-matter produced with the same abundances
The thermal model describes the production yields dN/dy in Pb-Pb collisions over a wide range of dN/dy (7 orders of magnitude).

- Also the yields of the nuclei are well reproduced
 - nuclei are thermally produced in the hadronisation, together with the other particle species
In Run2 the uncertainties on the particle yields have been reduced, thanks to a larger data sample and to the improvement in the analysis techniques.

Although describing qualitatively well the particle yields, there is less agreement between the thermal model prediction and the particle yields.
A rising in the multiplicity integrated B_2 as a function of p_T can be obtained even if the B_2 of all the multiplicity classes is flat in p_T.

Indeed, a consistent change in the proton spectra with the multiplicity determines a mathematical bias in the computation of the multiplicity integrated B_2.

- A rising in the multiplicity integrated B_2 as a function of p_T can be obtained even if the B_2 of all the multiplicity classes is flat in p_T.
- Indeed, a consistent change in the proton spectra with the multiplicity determines a mathematical bias in the computation of the multiplicity integrated B_2.

ALICE Preliminary

pp INEL, $\sqrt{s} = 7$ TeV

- \bar{d}, PRC 97 (2018) 024615
- Coalescence

B_2 (GeV2/c2)

p_T/A (GeV/c)