

David Stewart, Yale University, for the STAR Collaboration

Correlation measurements of charged particles and jets at mid-rapidity with event activity at

backward-rapidity in $\sqrt{s_{NN}} = 200 \,\text{GeV} \,\text{p+Au}$ collisions at STAR

Jets: what and why

 Hard scatterings of partons occur early in collisions and subsequent products may interact with a medium

 Jets found via clustering algorithm (de facto standard: anti- k_T) allow access to hard scattered parton kinematics

 Modification of jets is used to probe existence and properties of a QGP

R^{jet} p/d+A

Semi-inclusive jet measurement

- geometry

5

• $S_{EA-high}/S_{EA-low}$ tests EA dependency of net final state effects

ALICE h+jet (semi-inclusive) measurement 2018: Measured jet spectra per trigger (S) recoiling from high p_T hadrons (semi-inclusive)

Took ratio of spectra: $S_{0-20\% EA}/S_{50-100\% EA}$

 Set upper limit on out-of-cone energy transport (jet quenching), using jets up to $x_p \sim 0.02$

+ If applicable at all x_p , limit is not consistent with ATLAS and PHENIX measurements

STAR

David Stewart

6

Current status + STAR preliminary ATLAS measurement hints that jet spectra modification scales with x_p

4
<u> </u>
S
Ъ
\leq
F
C C C
.+
Ψ
•
Z
<u>\$</u>
Š
ω
0
4
$\overline{\mathbf{\omega}}$
N
Õ
\underline{S}

Current status + STAR preliminary ATLAS measurement hints that jet spectra modification scales with x_p

Jet spectra EA-modification scorecard

4
<u> </u>
S
Ъ
\leq
F
C C C
.+
Ψ
•
Z
<u>\$</u>
Š
ω
0
4
$\overline{\mathbf{\omega}}$
N
Õ
\underline{S}

Current status + STAR preliminary

Jet spectra EA-modification scorecard

Jet and EA measurement at STAR

+Time Projection Chamber (TPC): charged tracks with p_T at $|\eta| < 1.0$ +Barrel Electromagnetic Calorimeter (BEMC): energy deposition, primarily neutral particles at $|\eta| < 1.0$ +Beam-Beam Counter (BBC): plastic scintillators in two rings: $2 < |\eta| < 3.4$ and $3.4 < |\eta| < 5.0$ •BBC, in Au-going direction, corrected for z-vertex and luminosity, is EA estimator

8

STAR p+Au collisions in 2015: EA deciles, triggers, and jets

- Minimum bias events: set EA deciles definition

BEMC triggered events: high transverse energy (E_{T}) hits in BEMC:

10

10

Confirmed expectation of positive correlation between EA and probability of BEMC trigger

10

Confirmed expectation of positive correlation between EA and probability of BEMC trigger

Correlation weakens for increasing trigger E_{T}

10

Confirmed expectation of positive correlation between EA and probability of BEMC trigger

Correlation weakens for increasing trigger E_{T}

10

Confirmed expectation of positive correlation between EA and probability of BEMC trigger

Correlation weakens for increasing trigger $E_{\rm T}$

 $\begin{array}{l} \langle N_{\rm ch} \rangle \text{ indicates an} \\ \text{``underlying event'' which} \\ \text{grows with EA combined} \\ \text{with an approximately} \\ \text{constant } \langle N_{\rm ch} \rangle \text{ from triggers} \end{array}$

Clustering charged tracks into jets

Jets:

anti-k_⊤

R=0.4

|**η**|<0.6

- + Binned in $\Delta \phi$ in $\pi/8$ slices from the trigger
- Jet spectra presented in this talk are raw uncorrected, detector level
- Tracking efficiency is EA-independent* & negligible underlying event
 - → $S_{0-30\%EA}/S_{70-90\%EA}$ expected to be insensitive to track corrections

$S_{0-30\%EA}/S_{70-90\%EA}$ suppression caused by simple dijet kinematics? Hard parton scatterings result in jets that influence both: Charged jet spectra at $|\eta| < 1$ ✦ EA from BBC at $-5 < \eta < -2$ (outer BBC $\eta \in -2, -3.4$ inner BBC $\eta \in -3.4, -5$ EA dependent bias in $\sigma^{\text{pp} \rightarrow \text{trigger+jet}} |_{\text{TPC}} + X$ $\sigma^{pp \rightarrow trigger + X}$ EA

STAR

14

 Cluster R=0.7 full jets for $|\eta| < 7$

+ Two with max p_{T} are "leading" and "subleading"

 Cluster R=0.7 full jets for $|\eta| < 7$

- + Two with max p_{T} are "leading" and "subleading"
- A leading jet axis hits BBC in ~40% of inclusive events

14

- Cluster R=0.7 full jets for $|\eta| < 7$
 - + Two with max p_{T} are "leading" and "subleading"
- A leading jet axis hits 10^{-3} BBC in ~40% of **10**⁻⁴ inclusive events **10**⁻⁵
- ✦ Hits outer BBC in ~2% **10**⁻⁷ of triggered events
 - ➡ inflates EA

STAR

14

- Cluster R=0.7 full jets for $|\eta| < 7$
 - + Two with max p_{T} are "leading" and "subleading"
- 10⁻² A leading jet axis hits 10^{-3} BBC in ~40% of 10^{-4} inclusive events **10**⁻⁵ 10^{-6}
- ✦ Hits outer BBC in ~2% **10**⁻⁷ 10^{-8} of triggered events 10^{-9}
 - ➡ inflates EA

10⁻¹⁰

 Rarely hits outer BBC in triggered events with 8 GeV/c charged jet

Cluster R=0.7 full jets for $|\eta| < 7$

Two with max p_{T} are "leading" and "subleading"

leading jet axis hits BC in ~40% of clusive events

its outer BBC in ~2% f triggered events

inflates EA

arely hits outer BBC in triggered events with 8 GeV/c charged jet

14

No BBC_{inner} hits in 5.9x10⁷+ (Trig&Jet) events

<u>Method</u>

PYTHIA jet spectra if dijet bias is removed <u>Method</u> Example event Leading jet C - 1[3.4]Subleading jet STAR 16

In each event, read EA signal from the BBC opposite of leading/ subleading jet with max(|**n**|)

PYTHIA jet spectra if dijet bias is removed <u>Method</u> Example event Leading jet BC-1 [3.4, Subleading jet SAR 16

- In each event, read EA signal from the BBC opposite of leading/ subleading jet with max(|**n**|)
- Remove all dijet constituents from BBC
- Remove suppression of $S_{0-30\%EA}/S_{70-90\%EA}$ due to dijets in outer BBC

PYTHIA $S_{0-30\%EA}/S_{70-90\%EA}$ with and without dijet bias Using "opposite-side" BBC for EA sorting reduces suppression by ~constant factor for outer and full, but not

inner, BBC

STAR

17

STAR

18

Smaller expected dijet kinematic effects in p+Au collisions than pp collisions, due to multiple soft collisions measured with hard collisions

Suppression of $S_{0-30\%}/S_{70-90\%}$ persists with EA selection by **BBC**_{inner} or **BBC**_{outer} instead of BBC_{full}

Conclusion

+ Clear suppression of $S_{0-30\%}/S_{70-90\%}$ in 200 GeV p+Au collisions at STAR Suppression indicates there is either:

- A. Event activity related modification of jet spectra
- B. EA bias for $\sigma_{trigger+jet}|_{TPC}$ relative to

 $\sigma_{
m trigger}$

Not a trivial dijet bias

 Suppression measured in similar xp ranges as in d+Au and p+Pb at RHIC and LHC energies, respectively

Extra Slides

20

Average maximum track p_T per event

Strong positive correlation evolves to anti-correlation with harder triggers

Spectra in three EA bins for raw, uncorrected tracks

STAR

✦Jets:

♦R=0.4

- ♦anti-k_T clustering algorithm using FastJet 3.3.0
- composed of detector level, un-corrected tracks
- ♦|η|<0.6 (for jet center individual tracks may extend to |η|<1.0)
- Are not background subtracted
- ◆The trigger which defines φ=0 is defined as the highest E_T BEMC hit in the event
- The azimuth of the jets are relative to the trigger in the event

ALICE 2016 measurement: R_{CP} binned by EA

- Hybrid method developed to remove dynamical biases in $N_{\rm coll}$ determination
- + Resulting EA binned R_{p+Pb} (labeled as $Q_{\rm pPb}$ to indicate use of hybrid method) found consistent with unity at $x_P \sim 0.05$

Priors and Unfolding

STAR

- spectra of each particle species
- at 200 GeV
- (2007))

+A single embedding response matrix was generated for all charged tracks, necessitating the relative production

+Measurements of π⁺, π⁻, p, and anti-proton data up to about 10 GeV at exist at STAR for d+Au and pp collisions

spectrum has been measured up to about 5 GeV/c in 200 GeV pp collisions at STAR (PLB616, 8 (2005)) ♦ K⁺ spectrum has been measured up to about 2.3 GeV/c in 200 GeV d+Au collisions at PHENIX (PRC 75, 64901)

Kaon prior

- (2007)) to generate the K⁺ and K⁻ spectra
- particle species' response matrices to a single charge particle response matrix

+ From both the pp and d+Au data, the π^+ and π^- spectra were m_T scaled (with a scaling factor of 2.0 from (PRC 75, 064901)

+Each spectra was fit with a Levy function; these functional forms provided the priors uses to weight and sum the six

+Differences in the final result from using the Kaon spectra from the d+Au collisions vs using the spectra from the pp collisions were accounted in the systematic errors fo the results. See prior slide for reference for measured data.

27

STAR & PHENIX d+Au 200 GeV

Standard FastJet3 background estimator

Jet Median Background Estimator, skip 2 hardest, $l\eta_{ghost}$ I<4,area =0.1

$- EA_{70-90\%}$ $- EA_{0-30\%}$

STAR Preliminary $p + Au \sqrt{s_{NN}} = 200 \,\text{GeV}$ Anti- k_{T} raw charged jets $R = 0.4, |\eta_{\text{jets}}| < 0.6$ 8 GeV trigger in BEMC

Background is 0 for: EA70-90% : 95% of events EA_{0-30%} : 85% of events

28

$\sqrt{s_{NN}}$ correlation of mid- η hard jet to backward- η energy deposition

29

E^{incl}/dη)

lard/dη)(

- CMS measured energy deposition at $-6.6 < \eta < -5.2$ as a function of leading charged jet at $|\eta| < 2$
- + This is plotted to the right as a ratio the energy deposition in inclusive events + Found for increasing mid-η jets:
 - + Enhancement in $\sqrt{s} = 7 \,\text{TeV}$ collisions
 - Slight enhancements that turns over in $\sqrt{s} = 2.76 \,\mathrm{TeV}$
- + Suppression for $\sqrt{s} = 0.9 \,\text{TeV}$ Present study at STAR even lower at $\sqrt{s} = 0.2 \,\mathrm{TeV}$
- Suggested in study possible cause of energy conservation

→ Enhance $S_{70-90\%}$ and suppress $S_{0-30\%}/S_{70-90\%}$

Theory result: modify Glauber to conserve $p_{tot}(p/d)$ in p/d+A collisions

Traditional Glauber treats all N_{coll} collisions as equal

- + Modify Glauber for depletion of energy (p_{total}) of the proton/deuteron
- + Primary result: more high energy jets (from N_{coll}) are correlated with lower overall multiplicity (by energy conservation)
- Takeaway: jet suppression and enhancement is predicted to result from misbinning EA

- $R_{(p/d)A}^{jet \operatorname{High} EA} < 1 \& R_{(p/d)A}^{jet \operatorname{Low} EA} > 1$
- Low EA events getting extra counts

High EA events getting less counts

30

