Collective behavior of high-p_T particles in 8.16 TeV $p+Pb$ collisions with ATLAS

Kurt Hill
University of Colorado, Boulder
for the ATLAS collaboration
v_n in Pb+Pb

\begin{center}
\begin{tikzpicture}
\begin{axis}[
 title={ATLAS
 $|n| < 2.5$
 20-30 %
 Pb+Pb, 22 \mu b^{-1}
 $\sqrt{s_{NN}} = 5.02$ TeV
 \}
 xlabel={p_T [GeV]},
 ylabel={v_n [SP]},
 legend style={at={(0.5,0.5)}, anchor=north},
 legend cell align=left
]
 \addplot[black,mark=*,line width=1.0pt] coordinates {
 (0.5,0.3)
 (1,0.25)
 (2,0.2)
 (3,0.15)
 (4,0.1)
 (5,0.05)
 (6,0.0)
 };
 \addlegendentry{$n=2$}
 \addplot[red,mark=square*,line width=1.0pt] coordinates {
 (0.5,0.25)
 (1,0.2)
 (2,0.15)
 (3,0.1)
 (4,0.05)
 (5,0.0)
 };
 \addlegendentry{$n=3$}
 \addplot[green,mark=diamond*,line width=1.0pt] coordinates {
 (0.5,0.2)
 (1,0.15)
 (2,0.1)
 (3,0.05)
 (4,0.0)
 };
 \addlegendentry{$n=4$}
 \addplot[blue,mark=square*,line width=1.0pt] coordinates {
 (0.5,0.15)
 (1,0.1)
 (2,0.05)
 (3,0.0)
 };
 \addlegendentry{$n=5$}
 \addplot[green,mark=diamond*,line width=1.0pt] coordinates {
 (0.5,0.1)
 (1,0.05)
 (2,0.0)
 };
 \addlegendentry{$n=6$}
 \addplot[blue,mark=square*,line width=1.0pt] coordinates {
 (0.5,0.05)
 (1,0.0)
 };
 \addlegendentry{$n=7$}
\end{axis}
\end{tikzpicture}
\end{center}
v_n in Pb+Pb

ATLAS
$|n| < 2.5$
20-30%

$\sqrt{s_{NN}} = 5.02$ TeV

Hydrodynamics

v_n in Pb+Pb

Hydrodynamics

Differential energy loss
v_n in Pb+Pb

Hydrodynamics

Differential energy loss

Transition region

ATLAS $|n| < 2.5$

20-30 %

$\sqrt{s_{NN}} = 5.02$ TeV

v_n in $p+Pb$

Hydrodynamics

Transition region
Event selection

• 165 nb\(^{-1}\) of 8.16 TeV \(p+Pb\) data taken in 2016

• Select events with three different triggers
 • Minbias
 • Jet \(p_T > 75\) GeV
 • Jet \(p_T > 100\) GeV
Event selection

- 165 nb\(^{-1}\) of 8.16 TeV \(p+\)Pb data taken in 2016
- Select events with three different triggers
 - Minbias
 - Jet \(p_T > 75\) GeV
 - Jet \(p_T > 100\) GeV
Event selection

- 165 nb$^{-1}$ of 8.16 TeV p+Pb data taken in 2016
- Select events with three different triggers
 - Minbias
 - Jet $p_T > 75$ GeV
 - Jet $p_T > 100$ GeV
- Charged particles in tracker $|\eta| < 2.5$
Event selection

- 165 nb$^{-1}$ of 8.16 TeV p+Pb data taken in 2016

- Select events with three different triggers
 - **Minbias**
 - Jet $p_T > 75$ GeV
 - Jet $p_T > 100$ GeV

- Charged particles in tracker $|\eta| < 2.5$
- Jets in calorimeter: $|\eta| < 4.9$
Event selection

• 165 nb$^{-1}$ of 8.16 TeV p+Pb data taken in 2016

• Select events with three different triggers
 • Minbias
 • Jet $p_T > 75$ GeV
 • Jet $p_T > 100$ GeV

• Charged particles in tracker $|\eta| < 2.5$
• Jets in calorimeter: $|\eta| < 4.9$
• Centrality measured via ΣE_T in Pb-going FCal: $3.1 < \eta < 4.9$
• Make standard 2-particle $\Delta\phi$ correlations
2-particle correlations

- Make standard 2-particle $\Delta \phi$ correlations
- Require $|\Delta \eta| > 2$
2-particle correlations

- Make standard 2-particle $\Delta \phi$ correlations
- Require $|\Delta \eta| > 2$

$$Y(\Delta \phi) = G \left\{ 1 + 2 \sum_{n=1}^{\infty} v_{n,n} \cos(n\Delta \phi) \right\}$$
2-particle correlations

- Make standard 2-particle $\Delta \phi$ correlations
- Require $|\Delta \eta| > 2$

\[
Y(\Delta \phi) = G \left\{ 1 + 2 \sum_{n=1}^{\infty} v_{n,n} \cos(n \Delta \phi) \right\}
\]

Assume factorization to extract v_2 from $v_{2,2}$
Template fit non-flow subtraction

Minimum bias (0-5% central)

\(\Delta \phi \)

\[Y(\Delta \phi) \]

\[\Delta \phi \]

\[Y(\Delta \phi) \cdot G - F Y^{pol}(\Delta \phi) \]

\[0-5\% \text{ central} \]

\[\chi^2/NDF = 1.03 \]

\[\nu_{2,2} \times 10^3 = 10.58 \pm 0.08 \]

\[\nu_{3,3} \times 10^3 = 1.91 \pm 0.08 \]

\(\rho + Pb \) \(\sqrt{s}_{NN} = 8.16 \text{ TeV} \), 165 nb\(^{-1}\) \(3.5 < p_t < 4.0 \text{ GeV} \)

"ATLAS"
Template fit non-flow subtraction

\[Y_{\text{Central}}(\Delta \phi) = F_{\text{temp}} \cdot Y_{\text{Peripheral}}(\Delta \phi) + Y_{\text{Flow}}(\Delta \phi) \]

Peripheral data used to form template
Template fit non-flow subtraction

\[Y_{\text{Central}}(\Delta \phi) = F_{\text{temp}} \cdot Y_{\text{Peripheral}}(\Delta \phi) + Y_{\text{Flow}}(\Delta \phi) \]
Template fit non-flow subtraction

\[\Delta T \]

\[Y(\Delta \phi) \]

\[\text{ATLAS} \quad p+\text{Pb} \quad \sqrt{s_{\text{NN}}} = 8.16 \text{ TeV}, \quad 165 \text{ nb}^{-1} \]

\[3.5 < p_T < 4.0 \text{ GeV} \]

\[\chi^2/\text{NDF} = 1.03 \]

\[\nu_{2,2} \times 10^3 = 10.58 \pm 0.08 \]

\[\nu_{3,3} \times 10^3 = 1.91 \pm 0.08 \]

\[0-5\% \text{ central} \]
Template fit non-flow subtraction

Minimum bias

Jet $p_T > 100$ GeV

ATLAS

$p+Pb \sqrt{s_{NN}} = 8.16$ TeV, 165 nb$^{-1}$

χ^2/NDF = 1.03

$\phi = 2.5$

$\phi = 2.6$

$\phi = 2.7$

$\phi = 2.8$

$\phi = 2.9$

$\Delta \phi$

Y_{cent}

Y_{Fit}

Peri

$Y_{\text{F}} + G$

Y_{peri}

$Y_{\text{peri}}(0)$

$G + F Y_{\text{peri}}$

$G + F Y_{\text{peri}}(0)$

χ^2/NDF = 3.36

χ^2/NDF = 3.36

$0.13 \pm 2.43 \times 10^3$

$0.13 \pm 5.01 \times 10^3$

$0.13 \pm 10.58 \times 10^3$

$0.13 \pm 1.91 \times 10^3$

$0.13 \pm 5.01 \times 10^3$

$0.13 \pm 10.58 \times 10^3$

$0.13 \pm 1.91 \times 10^3$

$0.13 \pm 2.43 \times 10^3$

$0.13 \pm 5.01 \times 10^3$

$0.13 \pm 10.58 \times 10^3$

$0.13 \pm 1.91 \times 10^3$

$0.13 \pm 2.43 \times 10^3$

$0.13 \pm 5.01 \times 10^3$

$0.13 \pm 10.58 \times 10^3$

$0.13 \pm 1.91 \times 10^3$

$0.13 \pm 2.43 \times 10^3$

$0.13 \pm 5.01 \times 10^3$

$0.13 \pm 10.58 \times 10^3$

$0.13 \pm 1.91 \times 10^3$

Jet events have significantly stronger away-side peak from non-flow
Restricting associated particles in jet events

Associated particles are required to have $|\Delta \eta| > 1$ w.r.t. jets in event with $p_T^{\text{Jet}} > 15$ GeV

\[p_T^{\text{Jet}} > 15 \text{ GeV} \]
Restricting associated particles in jet events

Associated particles are required to have $|\Delta \eta| > 1$ w.r.t. jets in event with $p_T^{\text{Jet}} > 15$ GeV
Restricting associated particles in jet events

Associated particles are required to have $|\Delta \eta| > 1$ w.r.t. jets in event with $p_T > 15$ GeV

$p_T^{Jet} > 15$ GeV
Restricting associated particles in jet events

Associated particles are required to have $|\Delta \eta| > 1$ w.r.t. jets in event with $p_T^{\text{Jet}} > 15$ GeV

Not done in Minbias events
Restricting associated particles in 100 GeV jet events

Jet rejection drastically improves ‘signal-to-noise’
- Reduces sensitivity to template method assumptions

Before jet restriction

After jet restriction

Jet rejection drastically improves ‘signal-to-noise’
- Reduces sensitivity to template method assumptions
p_T dependent v_2 results

- MB p_T reach extended to ~20 GeV
• MB p_T reach extended to ~ 20 GeV
• Clear non-zero v_2 out to ~ 50 GeV in jet events
p_T dependent v_2 results

- MB p_T reach extended to ~20 GeV
- Clear non-zero v_2 out to ~50 GeV in jet events
- Consistency at low p_T

ATLAS

$p+$Pb $\sqrt{s_{NN}} = 8.16$ TeV, 165 nb$^{-1}$

- 0-5% central

- MB p_T reach extended to ~20 GeV
- Clear non-zero v_2 out to ~50 GeV in jet events
- Consistency at low p_T
p_T dependent v_2 results

- MB p_T reach extended to ~ 20 GeV
- Clear non-zero v_2 out to ~ 50 GeV in jet events
- Consistency at low and high p_T
$$p_T$$ dependent $$v_2$$ results

- MB $$p_T$$ reach extended to $$\sim 20$$ GeV
- Clear non-zero $$v_2$$ out to $$\sim 50$$ GeV in jet events
- Consistency at low and high $$p_T$$
- Transition to high $$p_T$$ behavior happens at lower $$p_T$$ for jet events
Very similar behavior when $p+Pb$ scaled up, though high-p_T seems to have less p_T dependence for $p+Pb$
Comparison to jet quenching calculation

\[V_2 \]

ATLAS

\[p+Pb \quad \sqrt{s_{NN}} = 8.16 \text{ TeV}, \quad 165 \text{ nb}^{-1} \]

0-5\% central

Zhang, Liao

- \(v_2 \) size a
- \(v_2 \) size b

arXiv: 1311.5463
Jet quenching calculation cannot simultaneously describe flow and spectra modification
What about the transition region?

Transition behavior could be driven by admixture of particles from hard scattering (jet) and from the underlying event (bulk)
Transition behavior could be driven by admixture of particles from hard scattering (jet) and from the underlying event (bulk)

- Measure the relative contribution of each type
Jet and bulk particle yield

Toward

Transverse

Leading Jet

(particle if no jet present)
Assume:
1. **Transverse** has only **bulk** particles
2. **Toward** has both **bulk** and **jet** particles

Solve for yield of **bulk** and **jet**
Particle pair composition

ATLAS
$p+\text{Pb}$ $\sqrt{s_{NN}} = 8.16$ TeV

Pair fraction

$0-5\%$ central

$\frac{p^{\text{int}} > 100 \text{ GeV}}{p^{\text{int}}}$

$L^{\text{int}} = 165$ nb$^{-1}$

V_2
Particle pair composition

- Associated particles highly likely to be from bulk
Particle pair composition

- Associated particles highly likely to be from bulk
- Low and high \(p_T \) dominated by bulk and jet particles respectively
Particle pair composition

- Associated particles highly likely to be from **bulk**
- **Low** and **high** p_T dominated by **bulk** and **jet** particles respectively
- **Transition** region sensitive to relative mixture of **bulk** and **jet**
 - e.g. ~4 GeV particle more likely to be from a jet if it’s in a jet triggered event
Conclusions

ATLAS

$p+\text{Pb} \sqrt{s_{\text{NN}}} = 8.16 \text{ TeV}, 165 \text{ nb}^{-1}$

0-5% central

V_2

$p_T^A [\text{GeV}]$

$\rho_T^\text{jet} > 100 \text{ GeV}$

MBT
Hydrodynamics

Conclusions

ATLAS

\[p+\text{Pb} \sqrt{s_{NN}} = 8.16 \text{ TeV}, 165 \text{ nb}^{-1} \]

0-5% central

\[p_T^{\text{jet}} > 100 \text{ GeV} \]
Conclusions

Hydrodynamics

Particle mixing transition

\mathcal{A}
Conclusions

Hydrodynamics

Particle mixing transition

$\frac{dN}{d\phi} = \int \frac{d^2p_T}{2\pi} \frac{1}{\sqrt{s}} f(p_T) \frac{1}{\sqrt{z}} f(z)$

$\frac{dN}{d\phi} \propto \frac{1}{\sqrt{z}} f(z)$

$\frac{dN}{d\phi} \propto \frac{1}{\sqrt{z}} f(z) \propto \frac{1}{\sqrt{z}} \frac{1}{\sqrt{s}} f(p_T)$

$\frac{dN}{d\phi} \propto \frac{1}{\sqrt{s}} f(p_T)$
These results and more are detailed in new paper

arXiv:1910.13978
Backup
Both v_2 and v_3 show similar behavior between MB and jet events

- Consistency at low and high p_T
- Transition to high p_T behavior happens at lower p_T for jet events
Factorization test

Minbias

Jet $p_T > 75$ GeV

Jet $p_T > 100$ GeV
Centrality dependent v_2 results

Low p_T

- At low and high p_T, v_2 roughly independent of centrality and event type

Mid p_T

- At mid p_T, v_2 decreases with centrality and is lower for high p_T jet events
Particle pair yields

Total pairs

\[P_{\text{total}} = N^A \cdot N^B \]
\[= (N_{\text{HS}}^A + N_{\text{UE}}^A) \cdot (N_{\text{HS}}^B + N_{\text{UE}}^B) \]
\[= N_{\text{HS}}^A \cdot N_{\text{HS}}^B + N_{\text{HS}}^A \cdot N_{\text{UE}}^B + N_{\text{UE}}^A \cdot N_{\text{HS}}^B + N_{\text{UE}}^A \cdot N_{\text{UE}}^B \]

HS correlations Cross correlations UE correlations

Associated particles are required to be separated by 2 units in \(\Delta \eta \), so these are not simple products

\[N_X^A \cdot N_Y^B = \int_{-2.5}^{2.5} \frac{dN_X^A(\eta^A)}{d\eta^A} \left[\int_2^5 \frac{d^2N_Y^B(\eta^A, |\Delta \eta|)}{d\eta^A d|\Delta \eta|} d|\Delta \eta| \right] d\eta^A \]
Centrality dependent pair fractions

Low p_T

Mid p_T

High p_T

- Again, *low* and *high* p_T roughly independent of centrality and event type
- Centrality changes pair fractions most in *mid* p_T region
Eremite calculation comparison

- Ideal hydro limit at low p_T (short mean free path) and eremitic limit at high p_T (large mean free path)
Run Pythia8 with HardQCD:all=on and PartonLevel:MPI=off
 - Select events with truth jet \(p_T > 100 \) GeV
 - Embed Pythia jet events into MB \(p+p \) using Angantyr model

Pythia jet events have long range nearside ridge from implementation of ISR
 - Correlation washed out by UE and thus gets smaller in more central events
 - Opposite behavior as what is seen in data

Pythia8 \(\sqrt{s_{NN}} = 8.16 \) TeV
 - For \(p+p \) and \(p+Pb \) Angantyr UE
 - For \(pp \) hard \(p_T \) jet > 100 GeV

\[\chi^2/NDF = 1.04 \]
\[\chi^2/NDF = 1.20 \]