One fluid may not rule them all - "the negative sign issue"

You Zhou **Niels Bohr Institute**

Based on:

UNIVERSITY OF COPENHAGEN

• W. Zhao, YZ, H. Xu, W. Deng and H. Song, Phys. Lett. B 780, 495 • W. Zhao, YZ, K. Murase and H. Song, in preparation

- comparable with Pb-Pb at low N_{ch}, weak multiplicity dependence
- ordering $v_2 > v_3 > v_4$
- Multi-particle cumulants
 - $v_2{4} \approx v_2{6} \approx v_2{8}$
 - Long-range multi-particle correlations in all systems -> anisotropic flow!

Nov 6th, 2019

You Zhou (NBI) @ QM2019, Wuhan

Flow in small systems

Flow vector correlations in small systems

- Correlations between flow harmonics, via symmetric cumulants

Nov 6th, 2019

You Zhou (NBI) @ QM2019, Wuhan

Similar correlations between different order flow vectors observed

• Correlations between flow symmetry planes, via asymmetric cumulants

Everything flows, everywhere flows (?)

Nov 6th, 2019

You Zhou (NBI) @ QM2019, Wuhan

• And many more in this QM, excellent reviews, see J. Nagle Mon. 14:30, K.K. Gajdosova Thur. 9:30

C. Loizides NPA956 (2016) 200

Observable or effect	Pb–Pb	p–Pb (high mult.)	pp (high mult.)
Low $p_{\rm T}$ spectra ("radial flow")	yes	yes	yes
Intermediate $p_{\rm T}$ ("recombination")	yes	yes	yes
Particle ratios	GC level	GC level except Ω	GC level except Ω
Statistical model	$\gamma_s^{\rm GC} = 1, 10-30\%$	$\gamma_s^{ m GC} \approx 1,20-40\%$	MB: $\gamma_s^{\rm C} < 1, 20-40\%$
HBT radii $(R(k_{\rm T}), R(\sqrt[3]{N_{\rm ch}}))$	$R_{ m out}/R_{ m side}pprox 1$	$R_{ m out}/R_{ m side}\lesssim 1$	$R_{ m out}/R_{ m side}\lesssim 1$
Azimuthal anisotropy (v_n)	$v_1 - v_7$	$v_1 - v_5$	$v_2 - v_4$
(from two particle correlations)			
Characteristic mass dependence	$v_2 - v_5$	v_2, v_3	v_2
Directed flow (from spectators)	yes	no	no
Charge-dependent correlations	yes	yes	yes
Higher-order cumulants	" $4 \approx 6 \approx 8 \approx LYZ$ "	" $4 \approx 6 \approx 8 \approx LYZ$ "	" $4 \approx 6$ "
(mainly $v_2\{n\}, n \ge 4$)	+higher harmonics	+higher harmonics	
Symmetric cumulants	up to $SC(5,3)$	only $SC(4,2), SC(3,2)$	only $SC(4,2), SC(3,2)$
Non-linear flow modes	up to v_6	not measured	not measured
Weak η dependence	yes	yes	not measured
Factorization breaking	yes $(n = 2, 3)$	yes $(n = 2, 3)$	not measured
Event-by-event v_n distributions	n = 2 - 4	not measured	not measured
Direct photons at low $p_{\rm T}$	yes	not measured	not observed
Jet quenching through dijet asymmetry	yes	not observed	not observed
Jet quenching through R_{AA}	yes	not observed	not observed
Jet quenching through correlations	yes (Z-jet, γ -jet, h-jet)	not observed (h-jet)	not measured
Heavy flavor anisotropy	yes	yes	not measured
Quarkonia production	suppressed [†]	suppressed	not measured

Nov 6th, 2019

You Zhou (NBI) @ QM2019, Wuhan

Summary Table

CERN Yellow Report: CERN-LPCC-2018-07

event-by-event central p+p, p+Pb and Pb+Pb collisions at $\sqrt{s} = 5.02 \text{ TeV}$

Ryan D. Weller^a, Paul Romatschke^{a,b,*}

superSONIC describes v_2 and v_3 data in pp, p-Pb and Pb-Pb using a single choice for the fluid parameter * Suggests common hydrodynamic origin including pp collisions

"One fluid to rule them all"

One fluid to rule them all: Viscous hydrodynamic description of

Physics Letters B 774 (2017) 351–356

You Zhou (NBI) @ QM2019, Wuhan

Headlines in newspapers

A Tiny Droplet of the Early Universe?

Tiny droplets of early universe matter created

Proton-Size Droplets of Primordial Soup May Be the Tiniest in the Universe

Researchers Create The Tiniest Droplets Of Early Universe Matter Yet

Q: Tiniest size of the hydrodynamic fluid?

Task: Search for hydrodynamic flow in pp **Tool: iEBE-VISHNU**

Nov 6th, 2019

Preparations for hydro calculations

- Tune parameters in hydrodynamic framework
 - fit particle spectra and integrated v_n
 - good agreements between data and iEBE-VISHNU with HIJING-IC
 - not worse than superSONIC calculations

Nov 6th, 2019

W. Zhao, YZ, H. Xu, W. Deng, H. Song, PLB 780 (2018) 495

You Zhou (NBI) @ QM2019, Wuhan

Validation of hydro framework

0.1

0.05

R. Weller, P. Romatschke, PLB 774 (2017) 351

 $v_2(p_T)$ superSONIC for p+p, √s=5.02 TeV, 0-1% *data for √s=13 TeV 0.12 **v₂, subtracted VA/2 0.1 ATLAS, N_{ch}=60+ ATLAS*, Nch=60+ CMS**, Ntrk=110-150 0.08 ⁵ 0.06 0.04 0.02 0 1.5 0.5 0 p_T (GeV)

Examinations of tuned hydrodynamic framework

Nov 6th, 2019

You Zhou (NBI) @ QM2019, Wuhan

W. Zhao, YZ, H. Xu, W. Deng, H. Song, PLB 780 (2018) 495

• Describe quantitatively p_T differential v_2 of both charged and identified particles -> so far so good

W. Zhao, YZ, H. Xu, W. Deng, H. Song, PLB 780 (2018) 495

 $c_2{4} = -v_2^4$

Nov 6th, 2019

Negative c₂{4}

You Zhou (NBI) @ QM2019, Wuhan

W. Zhao, YZ, H. Xu, W. Deng, H. Song, PLB 780 (2018) 495

Nov 6th, 2019

You Zhou (NBI) @ QM2019, Wuhan

No trivial bias

- Not non-flow (resonance decays)
 - $c_2{4} = c_2{4}_{2sub} = c_2{4}_{3sub}$
- Not multiplicity fluctuations
 - Using unit N_{ch} bin and then rebin into wider bin, same as experiments
- Not statistical stability
 - Huge hydro data sample has been produced

Combine $v_2\{2\}$ and $v_2\{4\}$

v₂{**2**}

 \checkmark

- $v_2{2}$: flow + flow fluctuations $v_2{4}$: flow – flow fluctuations
- * iEBE-VISHNU (HIJING-IC) works for $v_2{2}$ but not $v_2{4}$

Nov 6th, 2019

You Zhou (NBI) @ QM2019, Wuhan

This hydro calculation does not describe neither flow nor flow fluctuations in pp

×10⁻⁶

15

10

5

 c_2^{4}

12

v₂{4} X

pp $\sqrt{s} = 13 \text{ TeV}$

 $\blacksquare \text{ATLAS, } c_2 \{4\}_{3-\text{sub}}$

 $0.3 < p_{\tau} < 3.0 \text{ GeV/}c$

• CMS, $c_{2}\{4\}$

60

40

80

ÍEBE-ÝISHNÚ

(HIJING)

Para-l

Para-II

Para-III

Para-IV

120

100

140

 $N_{\rm ch}$

Preparations with 3 initial conditions

Testing two other different initial conditions

better than TRENTo)

Nov 6th, 2019

You Zhou (NBI) @ QM2019, Wuhan

• Hydrodynamic calculations could fit the data with selected set of parameters (HIJING and super-MC work

V₂(PT) with three IC

\clubsuit Describe qualitatively p_T differential v_2 of both charged and strange particles

You Zhou (NBI) @ QM2019, Wuhan

|4

All hydro give positive $c_2{4}$

Hydrodynamic calculations using super-MC and TRENTo initial conditions gives even larger positive $c_2{4}$, and far away from data

You Zhou (NBI) @ QM2019, Wuhan

Not only for iEBE-VISHNU

B. Schenke, C. Shen, and P. Tribedy, <u>arXiv:1908.06212</u>

Not only for iEBE-VISHNU but maybe a current difficulty

Nov 6th, 2019

Details, see: B. Schenke, Wed. 14.00 C. Shen, Thu.9.00

You Zhou (NBI) @ QM2019, Wuhan

Initial eccentricity distributions

Positive -\epsilon_2{4}⁴ results in positive c₂{4}

- Expected if $v_2 \propto \varepsilon_2$ lacksquare
- \clubsuit Negative $-\epsilon_2{4}^4$ also leads to positive $c_2{4}$
 - Unexpected if $v_2 \propto \varepsilon_2$

Nov 6th, 2019

You Zhou (NBI) @ QM2019, Wuhan

• Corresponds to wider $p(\varepsilon_2)$ distribution (larger ε_2 fluctuations, larger $<\varepsilon_2>$)

Non-linear hydrodynamic response

 \clubsuit Hydro modifies the p(v₂) distributions, especially the larger ε_2 region

Nov 6th, 2019

You Zhou (NBI) @ QM2019, Wuhan

* For the same ε_2 region, a significant non-linear (cubic) hydrodynamic response of v_2 to ε_2

non-linear response \longrightarrow additional fluctuations \implies positive c₂{4}

Flow vector correlations

Hydrodynamic calculations could qualitatively describe the asymmetric cumulants ac{3}, and symmetric cumulants SC(4,2)

Nov 6th, 2019

Flow harmonic correlations

Negative SC(3,2) observed in data, while all hydrodynamic calculations give positive SC(3,2)! It seems that hydrodynamic calculations have the difficulty to generate multi-particle (single/

mixed harmonic) cumulants correctly

Nov 6th, 2019

You Zhou (NBI) @ QM2019, Wuhan

- N_{ch}
- Other sensitive observables on flow and flow correlations
 - cumulants in hydro)
 - How about small systems?

What next (EXP)

Recheck statistical stability: what is the limit of 3-sub-event of 4-particle cumulants in large

• Multi-particle mixed harmonic correlations (shows -, +, -, + signs of 4-, 6-, 8- and 10-particle

You Zhou (NBI) @ QM2019, Wuhan

2 |

What next (TH)

Other initial conditions?

- dipole formulation of BFKL evolution (arXiv:1907.12871)
- Using global bayesian analysis to constrain the parameters in IC?

Improvements in hydro framework?

- With other 2+1D hydro framework
- 3+1D hydro?

None of the above works?

- Other mechanisms, AMPT-escape, Kinematic, string shoving etc. One fluid might not (yet) rule pp collision?

Nov 6th, 2019

Conclusions

- Probe hydrodynamic flow in pp collisions using iEBE-VISHNU works well for all 2- and 3-particle correlations,

 - can not reproduce negative signs of $c_2{4}$ and NSC(3,2)
- Further testings on new IC as well as hydro developments must be performed, to confirm if the fluid may rule pp collisions

The " research investment

- The negative signs have been headache for a while ...
- Whoever helps to solve the puzzle first, she/he is invited to give a seminar at NBI in Copenhagen

Nov 6th, 2019

You Zhou (NBI) @ QM2019, Wuhan

Backup

You Zhou (NBI) @ QM2019, Wuhan

Symmetric Cumulants in small systems

Nov 6th, 2019

Symmetric cumulants

Correlation between v_2^2 and v_4^2 in all systems

Anti-correlation between v_2^2 and v_3^2 at high multiplicities, a **transition** to positive correlation followed by both small and large systems

Not described by non-flow only models, but qualitatively predicted by model with initial stage correlations

What's next:

lacksquare

ullet

SC(mⁱ,n^j), SC(m,n,k)

challenges: statistics

Normalized Symmetric Cumulants

- Use NSC^v(3,2) to constrain initial state model
- v_n might not be linearly correlated with ε_n in small systems (e.g. pp)
 - it generates additional fluctuations which changes sign of $c_2{4}$
 - one should not compare initial NSC^{ϵ}(3,2) in model calculations to NSC^v(3,2) data
 - It also make less sense to compare $v_2\{6\}\{8\}/v_2\{4\}$ and $\varepsilon_2\{6\}\{8\}/\varepsilon_2\{4\}$ in SS.

Nov 6th, 2019

You Zhou (NBI) @ QM2019, Wuhan

***** iEBE-VISHNU

C. Shen, Z. Qiu, H. Song, J. Bernhard, S. Bass and U. Heinz. Comput. Phys. Commun. 199, 61 (2016)

In HIJING initial model, the produced jets pairs and excited nucleus are treated as independent strings, and these strings break into partons and quickly form hot spots for succeeding hydrodynamics. The center positions of strings (x_c, y_c) are sampled by Saxon-Woods distribution, and positions of partons within the strings are sampled by, exp $\left(-\frac{(x-x_c)^2+(y-y_c)^2}{2\sigma_c^2}\right)$

HIJING constructs energy density by energy decompositions of individual partons via a Gaussian smearing:

$$\epsilon = K \sum_{i} \frac{E_i^*}{2\pi\sigma^2\tau_0 \Delta\eta_s} \exp\left(-\frac{(x-x_i)^2 + (y-y_i)^2}{2\sigma^2}\right)$$

HIINGIC

	1					
	σ_{R}	σ_0	$ au_0$	η/s	$T_{ m sw}({ m MeV})$	
Para-I	1.0	0.4	0.1	0.07	147	1
Para-II	0.8	0.4	0.2	0.08	148	1
Para-III	0.4	0.2	0.6	0.20	148	1
Para-IV	0.6	0.4	0.4	0.05	147	1

In super-MC the entropy density is:

$$s(\mathbf{r}) = \frac{\kappa_s}{\tau_0} \sum_{k=1}^3 \gamma_k^{(i)} \, \frac{e^{-(\mathbf{r} - \mathbf{r}_k^{(i)})^2 / (2\sigma_g^2)}}{2\pi \sigma_g^2},\tag{5}$$

where γ_k is sampled from Γ distribution, $\mathbf{r}_k^{(i)}$ is quark's positions, σ_g is width of gluons.

	σ_{R}	σ_0	$ au_0$	η/s	$T_{\rm sw}({ m MeV})$
Para-I	1.0	0.4	0.1	0.07	147
Para-II	0.8	0.4	0.2	80.0	148
Para-III	0.4	0.2	0.6	0.20	148
Para-IV	0.6	0.4	0.4	0.05	147

Nov 6th, 2019

``

super-MC & TRENTo

In TRENTO the initial entropy density is:

$$s = s_0 \left(\frac{\tilde{T}_A^p + \tilde{T}_B^p}{2}\right)^{1/p}, \qquad (6)$$

where $\tilde{T}(x,y) \equiv \int dz \frac{1}{n_c} \sum_{i=1}^{n_c} \gamma_i \rho_c (\mathbf{x} - \mathbf{x_i} \pm \mathbf{b}/2)$, n_c is the number of

the independent constituents and $\rho_c(\mathbf{x}) = \frac{1}{(2\pi v^2)^{3/2}} \exp\left(-\frac{\mathbf{x}^2}{2v^2}\right)$,

	p	v	k	n_c	$ au_0$	η/s	$T_{\rm sw}({ m MeV})$
Para-I	0.5	0.3	1.5	4	0.2	0.08	149
Para-II	0.0	0.2	0.81	6	0.6	0.28	149
Para-III	0.5	0.2	1.0	4	0.8	0.28	149

