

Modification of hadron productions in small systems observed by PHENIX

Mitrankov Iurii For PHENIX collaboration

MOTIVATION

Flow measurements →strong evidence for QGP droplets in small systems;

Talk by Seyoung Han

Energy loss in the plasma?

If so, it would present itself in the hadrons spectra;

Interpreting Large systems

Talk by Anthony Hodges

MOTIVATION

Flow measurements →strong evidence for QGP droplets in small systems

Energy loss in the plasma?

If so, it would present itself in the mesons spectra

Interpreting Large systems

p+Au

6 November 2019

p+Au, d+Au, ³He+Au

6 November 2019

AT INTERMEDIATE p_T RANGE:

• Ordering $R_{pAu} > R_{dAu} > R_{HeAu}$ in 0-20%

PH*ENIX

AT INTERMEDIATE p_T RANGE:

- Ordering $R_{pAu} > R_{dAu} > R_{HeAu}$ in 0-20%
- $\pi^{0}\&\phi R_{pAu} \approx R_{dAu} \approx R_{HeAu}$ in peripheral collisions

5

6

8

p_(GeV/c)

8

p_(GeV/c)

PH*ENIX

AT INTERMEDIATE p_T RANGE:

- Ordering $R_{pAu} > R_{dAu} > R_{HeAu}$ in 0-20%
- $\pi^{0}\&\phi R_{pAu} \approx R_{dAu} \approx R_{HeAu}$ in peripheral collisions

AT HIGH-p_T RANGE:

• $\pi^0 R_{AB}$'s consistent with each other at high-p_T

PH^{*}ENIX

p+Au, d+Au, ³He+Au

AT INTERMEDIATE p_T RANGE:

- Ordering $R_{pAu} > R_{dAu} > R_{HeAu}$ in 0-20%
- π^{0} &φ R_{pAu} ≈ R_{dAu} ≈ R_{HeAu} in peripheral collisions

AT HIGH-p_T RANGE:

- $\pi^0 R_{AB}$'s consistent with each other at high-p_T
- Hint of suppression in central collisions!
- Hint of enhancement in peripheral collisions

$\pi^0 \& \phi R_{AB}$ in p+Al, p+Au, d+Au,³He+Au

6 November 2019

Iu. Mitrankov for PHENIX at QM'19

$\pi^0 \& \phi R_{AB}$ in p+Al, p+Au, d+Au,³He+Au

In whole φp_T range $\pi^0 \& \varphi$ mesons R_{AB} 's are similar in p+Al/Au

Iu. Mitrankov for PHENIX at QM'19

$\pi^0 \& \phi R_{AB}$ in p+Al, p+Au, d+Au,³He+Au

In whole φp_T range $\pi^0 \& \varphi$ mesons R_{AB} 's are similar in p+Al/Au

lu. Mitrankov for PHENIX at QM'19

$\pi^{0} \& \phi R_{AB}$ in p+Al, p+Au, d+Au,³He+Au

In whole ϕ p_T range $\pi^0 \& \phi$ mesons R_{AB}'s are similar in p+Al/Au

In whole φp_T range $\pi^0 \& \varphi$ mesons R_{AB} 's are similar in p/d/³He+Au

$\pi^{0} \& \phi R_{AB}$ in p+Al, p+Au, d+Au,³He+Au

In whole φp_T range $\pi^0 \& \varphi$ mesons R_{AB} 's are similar in p+Al/Au

In whole φp_T range $\pi^0 \& \varphi$ mesons R_{AB} 's are similar in p/d/³He+Au

Might indicate that CNM effects are not responsible for the differences between ϕ and π^0 seen in A+A

6 November 2019

Light mesons R_{AB} exhibit similar shape in contrast to heavy-ion

Light mesons R_{AB} exhibit similar shape in contrast to heavy-ion

Protons R_{AB} shows enhancement at moderate p_T as in heavy-ion

Light mesons R_{AB} exhibit similar shape in contrast to heavy-ion

Protons R_{AB} shows enhancement at moderate p_T as in heavy-ion

 π^{\pm} & \overline{p} invariant yield in 0-5% described by SONIC and superSONIC

FLOW might be responsible for protons enhancement!

π^{0} integrated yields & R_{AB} in p+Al, p+Au, d+Au,³He+Au

 $\pi^0 R_{AB}$'s seem to scale with N_{coll}/N_{part}^{proj} for systems with same target at high-p_T

lu. Mitrankov for PHENIX at QM'19

π^{0} integrated yields & R_{AB} in p+Al, p+Au, d+Au,³He+Au

π^{0} integrated yields & R_{AB} in p+Al, p+Au, d+Au,³He+Au

 π^{0} R_{AB} scales with N_{coll}

OLYTECH

Peter the Great St. Petersburg Polytechnic

OLYTECH

 $\phi \langle R_{AB} \rangle$ in Au-going – a hint of enhancement

OLYTECH

 $\phi \langle R_{AB} \rangle$ in Au-going – a hint of enhancement $\phi \langle R_{AB} \rangle$ at midrapidity – equal to unity

 $\phi \langle R_{AB} \rangle$ in Au-going – a hint of enhancement $\phi \langle R_{AB} \rangle$ at midrapidity – equal to unity $\phi \langle R_{AB} \rangle$ in p/He-going – a hint of suppression

arXiv:1906.09928v1

Same $\langle R_{AB} \rangle$ behavior was observed for h^{\pm} in p+Au central collisions:

arXiv:1906.09928v1

Same ⟨R_{AB}⟩ behavior
was observed for h[±] in
p+Au central collisions:
✓ Backward rapidity
shows large
enhancement

arXiv:1906.09928v1

Same ⟨R_{AB}⟩ behavior
was observed for h[±] in
p+Au central collisions:
✓ Backward rapidity
shows large
enhancement

✓ Forward rapidity shows suppression

Strong centrality dependence

arXiv:1906.09928v1

Same ⟨R_{AB}⟩ behavior
was observed for h[±] in
p+Au central collisions:
✓ Backward rapidity
shows large

- enhancement
- ✓ Forward rapidity shows suppression

Strong centrality dependence

arXiv:1906.09928v1

Same ⟨R_{AB}⟩ behavior
was observed for h[±] in
p+Au central collisions:
✓ Backward rapidity
shows large
enhancement

✓ Forward rapidity shows suppression

Strong centrality dependence

h^{\pm} in p+Al and p+Au

 $h^{\pm} R_{AB}$ in p-going direction is described by EPPS16+PYTHIA and nCTEQ15+PYTHIA

 $\langle R_{AB} \rangle$ vs. N_{part} in A-going direction is described by pQCD multi scattering calculations

- > Integrated $\pi^0 R_{AB}$ seem to:
 - \checkmark scale with N_{coll} at moderate p_T
 - ✓ scale with N_{coll}/N_{part}^{proj} for same target at high-p_T
- $\blacktriangleright \phi \& \pi^0$ mesons R_{AB} 's are consistent in all centralities, while protons R_{AB} 's show enhancement in central collisions, π^{\pm} and \bar{p} are described by SONIC
- \succ Hint of suppression for π^0 at high-p_T in central collisions
- Strong rapidity and centrality dependence of charged hadrons production in small systems, which is well described by CNM effects

- > Integrated $\pi^0 R_{AB}$ seem to:
 - \checkmark scale with N_{coll} at moderate p_T
 - ✓ scale with N_{coll}/N_{part}^{proj} for same target at high-p_T
- $ightarrow \phi \& \pi^0$ mesons R_{AB} 's are consistent in all centralities, while protons R_{AB} 's show enhancement in central collisions, π^{\pm} and \bar{p} are described by SONIC
- \succ Hint of suppression for π^0 at high-p_T in central collisions
- Strong rapidity and centrality dependence of charged hadrons production in small systems, which is well described by CNM effects

THANK YOU FOR YOUR ATTENTION!

BACKUP

$\phi dN/dy(\eta)$ in p+Al, p+Au,³He+Au

Using these data sets allow to discriminate the various CNM effects included in models like AMPT and EPOS.

Iu. Mitrankov for PHENIX at QM'19

model	Ordering	Peak position	High-p _T
Cold Nuclear E-loss	Х	Х	V
HIJING++	V	Х	Х

$\pi^0 R_{AB}$ in p+Au, d+Au, ³He+Au