

Anisotropic flow fluctuations of charged and identified hadrons in Pb-Pb collisions with the ALICE detector

Ya Zhu (for the ALICE Collaboration)

Central China Normal University

University of Copenhagen

Quark Matter 2019

Anisotropic flow and flow fluctuations

 Interactions among constituents transform the initial spatial anisotropy into momentum anisotropy

$$E\frac{d^3N}{d
ho^3} = rac{d^2N}{2\pi
ho_{\mathrm{T}}d
ho_{\mathrm{T}}d
ho} \left\{1 + \sum_{n=1}^{\infty} 2v_n \cos\left[n\left(\phi - \Psi_n\right)\right]\right\}$$

- v_n are sensitive to the evolution of the collision system. $(\eta/s, Initial conditions...)$
- Initial geometry fluctuations lead to flow fluctuations in the final state

$$\langle v_n^k \rangle \neq \langle v_n \rangle^k$$

Anisotropic flow and flow fluctuations of identified particles

- Anisotropic flow of identified particles:
 - Further constraints to initial conditions. particle production mechanisms
 - Probes the freeze-out conditions of the system
- Multi-strange baryons:
 - ♦ Expect small hadronic cross-sections.

First measurement of $v_2\{4\}$ (Less sensitive to non-flow) and flow fluctuations of identified hadrons with the ALICE detector

ALICE detector

Tracks:

 $\eta \mid$ < 0.8 (unidentified)

|y| < 0.5 (identified)

• ALICE Pb–Pb at $\sqrt{s_{\scriptscriptstyle {\rm NN}}}$ =5.02 TeV 320M events(2015 + 2018 data)

• ITS: Tracking, vertexing, triggering

TPC: Tracking, PID

• TOF: PID

V0: Triggering, multiplicity estimation

• Identification of π^{\pm} , K^{\pm} , $p(\bar{p})$:

♦ Utilising combined TPC & TOF detectors

♦ Track-by-track basis with purity > 80%

[ALICE, Eur.Phys.J.Plus 131 (2016) no.5, 168]

Multi-particle cumulant method

 2- & multi-particle cumulants are obtained using Generic Framework
 [A. Bilandzic et al, Phys. Rev. C 89 (2014) 064904]

 $\bullet\,$ The 2- & 4-particle cumulant are given by

$$c_n\{2\} = \ll 2 \gg$$

$$d_n\{2\} = \ll 2' \gg$$

$$c_n\{4\} = \ll 4 \gg -2 \cdot \ll 2 \gg^2$$

$$d_n\{4\} = \ll 4' \gg -2 \cdot \ll 2' \gg \ll 2 \gg$$

• Estimates of differential flow v_n are denoted as

$$v_n\{2\}(p_{_{\mathrm{T}}}) = \frac{d_n\{2\}(p_{_{\mathrm{T}}})}{\sqrt{c_n\{2\}}}$$
$$v_n\{4\}(p_{_{\mathrm{T}}}) = -\frac{d_n\{4\}(p_{_{\mathrm{T}}})}{(-c_n\{4\})^{3/4}}$$

 Multi-particle cumulant effectively suppress non-flow effect

η gap suppress short-range correlations

• For reconstructed particles: $\langle \langle n' \rangle \rangle^{Tot} (m_{inv}) =$

$$\langle \langle n' \rangle \rangle^{Sig} \, \frac{N_{Sig} \left(m_{inv} \right)}{N_{Tot} \left(m_{inv} \right)} + \langle \langle n' \rangle \rangle^{Bg} \, \left(m_{inv} \right) \, \frac{N_{Bg} \left(m_{inv} \right)}{N_{Tot} \left(m_{inv} \right)}$$

$\overline{p_{\text{T}}}$ -differential $v_2\{2\}$, $v_2\{4\}$, $v_2\{6\}$, $v_2\{8\}$

- Plethora of charged particles $v_2\{2\}$, $v_2\{4\}$, $v_2\{6\}$ and $v_2\{8\}$ measurements in ALICE
- $v_2\{2\}$ larger than $v_2\{4\}$, $v_2\{6\}$ and $v_2\{8\}$: fluctuations and non-flow

p_{T} -differential v_2 PDFs

- Deviation of $v_2\{4\}/v_2\{6\}$ and $v_2\{4\}/v_2\{8\}$ from unity at low $p_T \to \text{Bessel-Gaussian}$ parametrisation of v_n p.d.f. is not valid
- Non-trivial evolution with $p_{_{T}}$

$p_{\rm T}$ -differential v_2 PDFs

• Different moments (Skewness γ_1 and Kurtosis γ_2) of the distribution from $v_2\{m\}$ were calculated

[G. Giacalone et al, Phys. Rev. C 95 (2017) 014913]

$$egin{align} \gamma_1 &\simeq -2^{3/2} rac{v_2\{4\}^3 - v_2\{6\}^3}{(v_2\{2\}^2 - v_2\{4\}^2)^{3/2}} \ \ \gamma_2 &\simeq -rac{3}{2} rac{v_2\{4\}^4 - 12v_2\{6\}^4 + 16v_2\{8\}^4}{(v_2\{2\}^2 - v_2\{4\}^2)^2} \ \ \ \end{array}$$

- Dependence of the v_n p.d.f. on $p_{\rm T}$ is
- Higher $p_{_{\rm T}}$ (> 3 GeV/c): γ_1 and γ_2 are consistent with 0

not constant

v_2 {4} of identified particles

- First measurement of $v_2\{4\}$ of identified hadrons
- Qualitatively similar behaviour as of $v_2\{2\}$ measurements Clear mass ordering at low $p_{_{\rm T}}$ and baryon/meson grouping at intermediate $p_{_{\rm T}}$

n_q scaling test for $v_2\{4\}$ of identified particles & hydrocalculations

- Both v_2 and $p_{\rm T}$ are scaled by the number of constituent quarks (n_q)
- The various hadron species approximately follow a common trend at intermediate $p_{\scriptscriptstyle \rm T}$ (About 20% deviation)
- Hydro calculations can describe $v_2\{4\}$ of π , K, p well

v_3 {4} of identified particles

- v_3 {4} of identified hadrons has been measured in a wider centrality interval
- Qualitatively similar behaviour as of $v_3\{2\}$ measurements Clear mass ordering at low $p_{\scriptscriptstyle \rm T}$ and baryon/meson grouping at intermediate $p_{\scriptscriptstyle \rm T}$

Flow and flow fluctuation

 Measurements of 2- & 4-particle cumulant are used to study flow and flow fluctuations (if non-flow is negligible in 2-PC) [S.A. Voloshin et al.PLB 659 (2008) 537]

$$v_n \{2\}^2 = \langle v_n \rangle^2 + \sigma_{v_n}^2$$

$$v_n \{4\}^2 \approx \langle v_n \rangle^2 - \sigma_{v_n}^2$$

$$\downarrow \downarrow$$

$$\langle v_n \rangle \approx ((v_n \{2\}^2 + v_n \{4\}^2)/2)^{1/2}$$

$$\sigma_{v_n} \approx ((v_n \{2\}^2 - v_n \{4\}^2)/2)^{1/2}$$

- Non-flow effect of 2-particle cumulant was suppressed by η gap
- ⟨ν_n⟩ is the anisotropic flow from the symmetry plane and σ_{ν_n} is the corresponding anisotropic flow fluctuations

• Obvious centrality dependence of $\langle v_2 \rangle$ and σ_{v_2} for Ξ

Relative flow fluctuations

• Relative v_n fluctuations

$$F(v_n) = \frac{\sigma_{v_n}}{\langle v_n \rangle}$$

- First measurement of relative flow fluctuations for identified hadrons
- No definite particle species dependence

Relative flow fluctuations of identified particles compared with hydro calculations

- Hydro can describe $F(v_2)$ of π , K, p well in 30-40%
- Hydro calculations with AMPT initial state describe a $F(v_2)$ distribution with obvious particle species dependence at low p_T

Summary

- p_T-differential measurements of charged particles flow coefficients using 6- and 8-particle cumulants are done for the first time in ALICE.
- v₂ distribution is not described well by the Bessel-Gaussian distribution.
- Non-trivial evolution with p_{T} .
- The first measurement of $v_2\{4\}$ and flow fluctuations of identified hadrons.
- No definite particle species dependence observed for relative flow fluctuations of identified particles.

p_ (GeV/c)

Back up

16

$p_{\rm T}$ -differential $v_3\{2,4\}$ and $v_4\{2\}$

Correlation between soft and hard $v_2\{m\}$

$ho_{\!\scriptscriptstyle m T}$ -differential γ_1 and γ_2

19

$v_2{4}$ of identified particles

$v_2\{4\}/n_{\rm q}$ - $p_{\rm T}$ / $n_{\rm q}$

$v_2{4}/n_q$ - $KE_{\rm T}/n_q$

$v_2\{4\}$ of identified particles compared with hydro calculations using AMPT-IC

$v_2\{4\}$ of identified particles compared with hydro calculations using TRENToIC

$F(v_2)$ of identified particles compare with hydro calculations using AMPT-IC

$F(v_2)$ of identified particles compare with hydro calculations using TRENTo-IC

