

Effects of Dissipative Baryon Current in Heavy-lon Collisions at RHIC-BES Energies

Xiang-Yu Wu¹

In collaboration with Long-Gang Pang¹ Guang-You Qin¹ Xin-Nian Wang¹²³

¹Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University

²Nuclear Science Division, Lawrence Berkeley National Laboratory

³Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Outline

Introduction

Model Setup

• (3+1)-dimensional CLVisc hydrodynamics model with dissipative baryon current

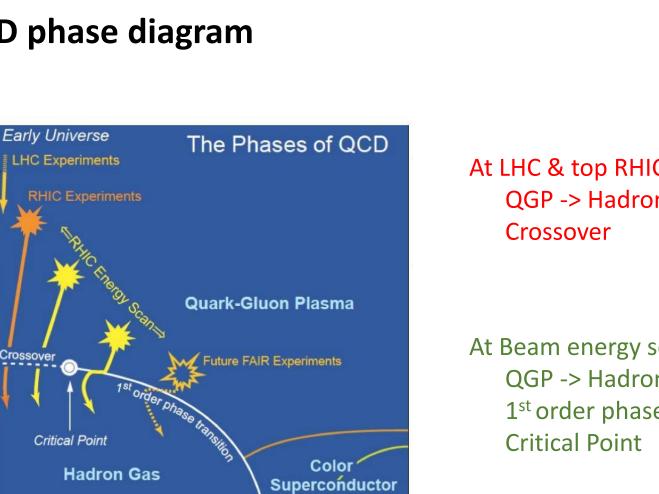
Numerical Results

Effects of dissipative baryon current on

- particle yield
- transverse momentum spectra of π , K, net-proton
- elliptic flow of π , net-proton

Conclusion

QCD phase diagram


Nuclear

Matter

900 MeV

Neutron Stars

Baryon Chemical Potential

At LHC & top RHIC collision energy, QGP -> Hadron Gas:

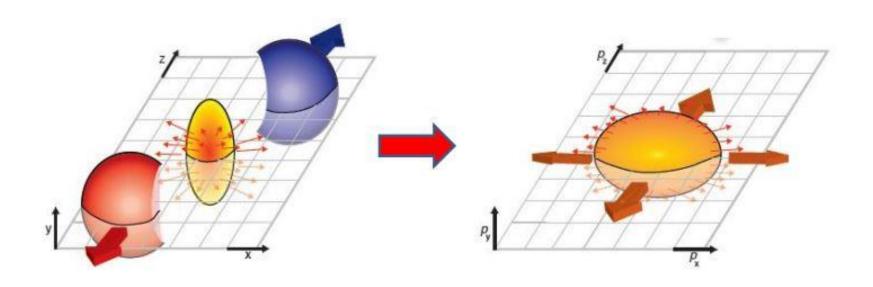
At Beam energy scan region, QGP -> Hadron Gas: 1st order phase transition or

0 MeV

Crossover

Vacuum

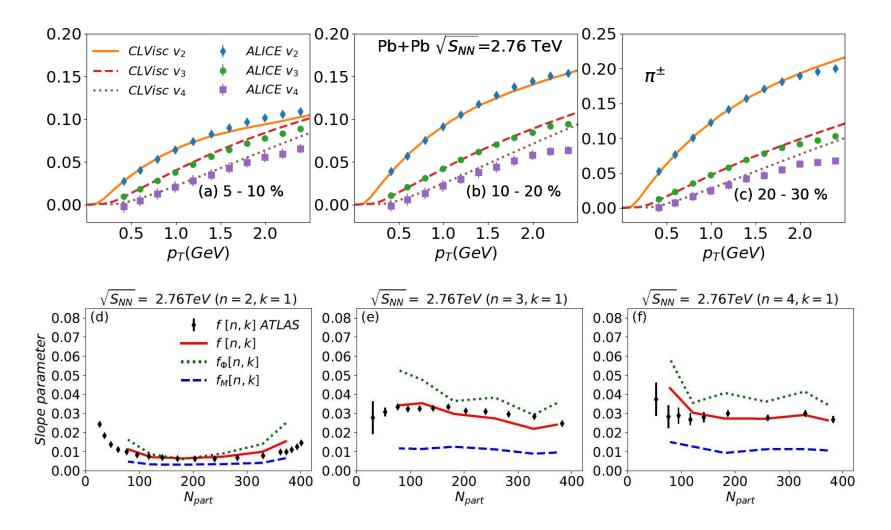
<u> Temperature</u>


155 MeV-

0 MeV-

Collective flow

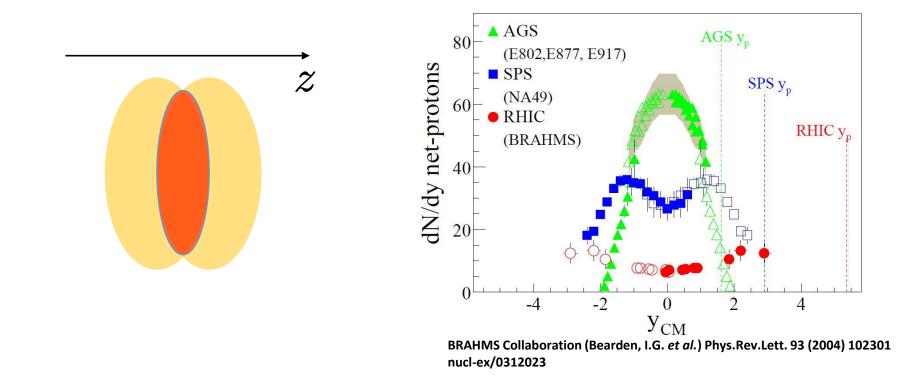
$$rac{dN}{p_T dp_T dy d\phi} = rac{dN}{2\pi p_T dp_T dy} iggl[1 + 2\sum_n v_n(p_T,y) \cos\left(n(\phi - \Psi_n(p_T,y))
ight) iggr]$$


The collective flow of the QGP fireball converts initial state geometric anisotropy to final state momentum anisotropy.

Xiang-Yu Wu, et al.

Hydrodynamics at high collision energy

Hydrodynamic simulation is successful in describing the collective behavior of QGP fireball at zero chemical potential both in transverse plane and longitudinal direction .



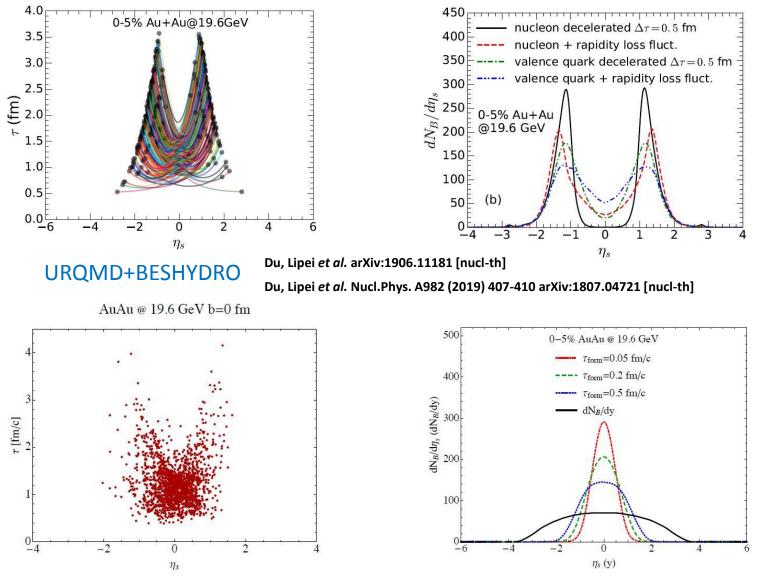
[Wu, Xiang-Yu et al. Phys.Rev. C98 (2018) no.2, 024913 arXiv:1805.03762 [nucl-th]]

Xiang-Yu Wu, et al.

Hydrodynamics at low collision energy

More net-baryons are observed at central rapidity region due to stronger baryon stopping at lower collision energy.

The dissipation of net-baryon current plays an important role at BES energies.


Xiang-Yu Wu, et al.

Theoretical progress

3D Monte-Carlo Glauber model + MUSIC

Denicol, Gabriel S. *et al.* Phys.Rev. C98 (2018) no.3, 034916 arXiv:1804.10557 [nucl-th] Shen, Chun *et al.* Phys.Rev. C97 (2018) no.2, 024907 arXiv:1710.00881 [nucl-th]

We extend the CLVisc hydrodynamic model to a non-zero baryon environment.

Energy – momentum conservation and net baryon current conservation:

$$egin{aligned} &\partial_{\,\mu}T^{\,\mu
u}\!=\!0 & T^{\,\mu
u}\!=\!eU^{\mu}U^{
u}-(P+\Pi)+\pi^{\mu
u} \ &\partial_{\,\mu}J^{\,\mu}\!=\!0 & J^{\,\mu}\!=\!nU^{\mu}\!+\!V^{\mu} \end{aligned}$$

Equation of motion of dissipative current:

$$\begin{aligned} \Delta^{\mu\nu}_{\alpha\beta} D\pi^{\alpha\beta} &= -\frac{1}{\tau_{\pi}} \left(\pi^{\mu\nu} - \eta \sigma^{\mu\nu} \right) - \frac{4}{3} \pi^{\mu\nu} \theta - \frac{5}{7} \pi^{\alpha\langle} \sigma^{\mu\nu\rangle}_{\alpha} + \frac{9}{70} \frac{4}{e+P} \pi^{\langle\mu}_{\alpha} \pi^{\nu\rangle\alpha} \\ \Delta^{\mu\nu} DV_{\mu} &= -\frac{1}{\tau_{V}} \left(V^{\mu} - \kappa_{B} \nabla^{\mu} \frac{\mu}{T} \right) - V^{\mu} \theta - \frac{3}{10} V_{\nu} \sigma^{\mu\nu} \end{aligned}$$

The shear viscosity η

$$\frac{\eta T}{e+P} = C_{\eta}$$

The baryon diffusion coefficient κ_B (Boltzmann equation by relaxation time approximation)

$$\kappa_{\scriptscriptstyle B} = rac{C_{\scriptscriptstyle B}}{T} n igg(rac{1}{3} \cot igg(rac{\mu_{\scriptscriptstyle B}}{T} igg) - rac{nT}{e+P} igg)$$

Denicol, Gabriel S. et al. Phys.Rev. C98 (2018) no.3, 034916 arXiv:1804.10557 [nucl-th]

Equation of state P(e, n): NEOSB (Based on Taylor expansion, LQCD+hadron gas, crossover)
Monnai, Akihiko et al. Phys.Rev. C100 (2019) no.2, 024907 arXiv:1902.05095 [nucl-th]Akihiko Monnai's
talk@6 Nov, 16:20Initial condition: MC Glauber modeltalk@6 Nov, 16:20

T7

Local entropy density

Local baryon density

$$egin{aligned} & s(x,y,\eta)|_{ au_0} \! = \! rac{K}{ au_0} \left(H_P^s(\eta) s_p(x,y) + H_T^s s_T(x,y)
ight) \ & n(x,y,\eta)|_{ au_0} \! = \! rac{1}{ au_0} \left(H_P^n(\eta) s_p(x,y) + H_T^n s_T(x,y)
ight) \end{aligned}$$

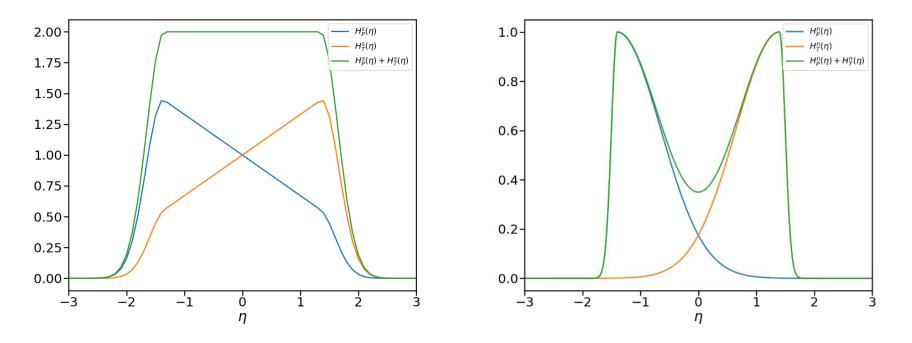
where
$$s_{P/T}(x,y) = \sum_{i=1}^{N_{\text{part}}^{P/T}} \frac{1}{2\pi\sigma_r^2} \exp\left(-\frac{(x-x_i)^2 + (y-y_i)^2}{2\pi\sigma_r^2}\right)$$
, $\tau_0 = \tau_{\text{overlap}} = \frac{2R}{\sqrt{\gamma^2 - 1}}$

Longitudinal profile

$$\begin{split} H_{P/T}^{s} &= \theta(\eta_{\max} - |\eta|) \left(1 \pm \frac{\eta}{y_{\text{beam}}} \right) \left[\theta(|\eta| - \eta_{0}^{s}) \exp\left(-\frac{(|\eta| - \eta_{0}^{s})^{2}}{2\sigma_{s}^{2}} \right) + \theta(\eta_{0}^{s} - |\eta|) \right] \\ H_{P/T}^{n} &= \frac{1}{N} \left[\theta(\eta - \eta_{0}^{n, P/T}) \exp\left(-\frac{(\eta - \eta_{0}^{n, P/T})^{2}}{2\sigma_{P/T}^{2}} \right) + \theta(\eta_{0}^{n, P/T} - \eta) \exp\left(-\frac{(\eta - \eta_{0}^{n, P/T})^{2}}{2\sigma_{T/P}^{2}} \right) \right] \end{split}$$

Denicol, Gabriel S. et al. Phys.Rev. C98 (2018) no.3, 034916 arXiv:1804.10557 [nucl-th]

Xiang-Yu Wu, et al.


Equation of state P(e, n): NEOSB (Based on Taylor expansion, LQCD+hadron gas, crossover)
Monnai, Akihiko et al. Phys.Rev. C100 (2019) no.2, 024907 arXiv:1902.05095 [nucl-th]Akihiko Monnai's
talk@6 Nov, 16:20Initial condition: MC Glauber modeltalk@6 Nov, 16:20

Local entropy density

Local baryon density

$$egin{aligned} & s(x,y,\eta)|_{ au_0} \! = \! rac{K}{ au_0} (H_P^s(\eta) s_p(x,y) + H_T^s s_T(x,y)) \ & n(x,y,\eta)|_{ au_0} \! = \! rac{1}{ au_0} (H_P^n(\eta) s_p(x,y) + H_T^n s_T(x,y)) \end{aligned}$$

Longitudinal profile

Equation of state P(e, n): NEOSB (Based on Taylor expansion, LQCD+hadron gas, crossover) Monnai, Akihiko et al. Phys.Rev. C100 (2019) no.2, 024907 arXiv:1902.05095 [nucl-th] Akihiko Monnai's Initial condition: MC Glauber model V

Local entropy density

Local baryon density

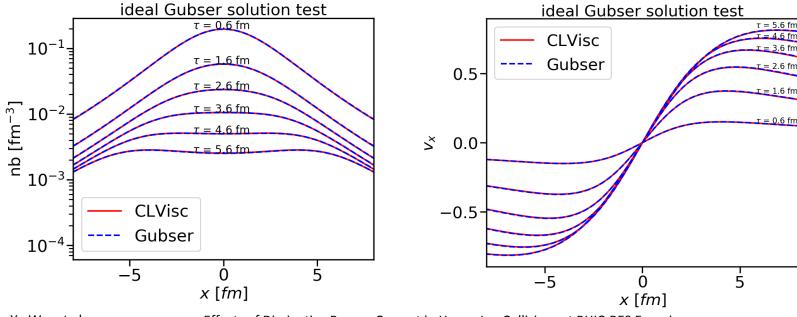
$$egin{aligned} & s(x,y,\eta)|_{ au_0} \! = \! rac{K}{ au_0} \left(H_P^s(\eta) s_p(x,y) + H_T^s s_T(x,y)
ight) \ & n(x,y,\eta)|_{ au_0} \! = \! rac{1}{ au_0} \left(H_P^n(\eta) s_p(x,y) + H_T^n s_T(x,y)
ight) \end{aligned}$$

Cooper-Frye Formula

$$\frac{dN_h}{d^3p} = \frac{g_h}{(2\pi)^3} \int_{\Sigma} p^{\mu} d^3 \sigma^{\mu} f(x,p)$$

where the phase-space distribution $f(x,p) = f^{eq}(x,p) + \delta f^{\pi}(x,p) + \delta f^{\pi}(x,p)$

In relaxation time approximation, the baryon diffusion correction


$$\delta f^n(x,p) = f^{eq}(1\pm f^{eq}(x,p))\left(rac{n}{e+P}-rac{b}{u^\mu p_\mu}
ight)rac{p^\mu V_\mu}{\overline{\kappa}_B}$$

Denicol, Gabriel S. et al. Phys.Rev. C98 (2018) no.3, 034916 arXiv:1804.10557 [nucl-th]

E

Xiang-Yu Wu, et al.

$$\begin{split} \varepsilon(\tau,r) &= \frac{\varepsilon}{\tau^4} \frac{(2q\tau)^{\frac{1}{3}}}{\left[1 + 2q^2(\tau^2 + r^2) + q^4(\tau^2 - r^2)^2\right]^{\frac{4}{3}}} \\ n(\tau,r) &= \frac{n_0}{\tau^4} \frac{(2q\tau)^2}{\left[1 + 2q^2(\tau^2 + r^2) + q^4(\tau^2 - r^2)^2\right]} \end{split} \quad \text{with} \quad v_{\perp}(\tau,r) = \frac{2q^2\tau r}{1 + (q\tau)^2 + (qr)^2} \end{split}$$

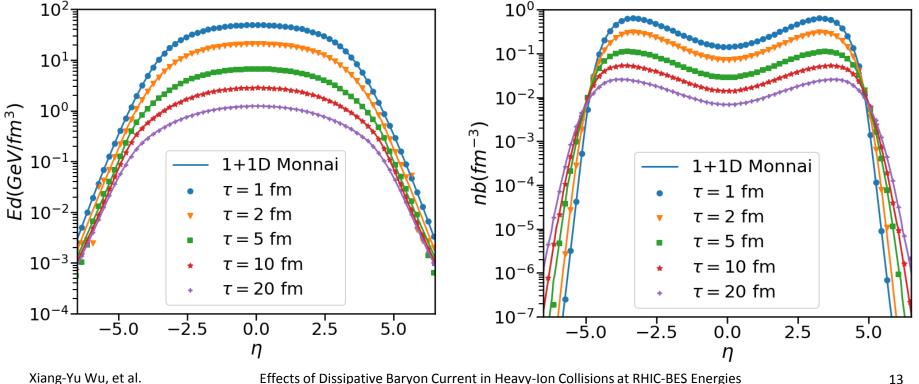
Effects of Dissipative Baryon Current in Heavy-Ion Collisions at RHIC-BES Energies

Transverse: Gubser flow

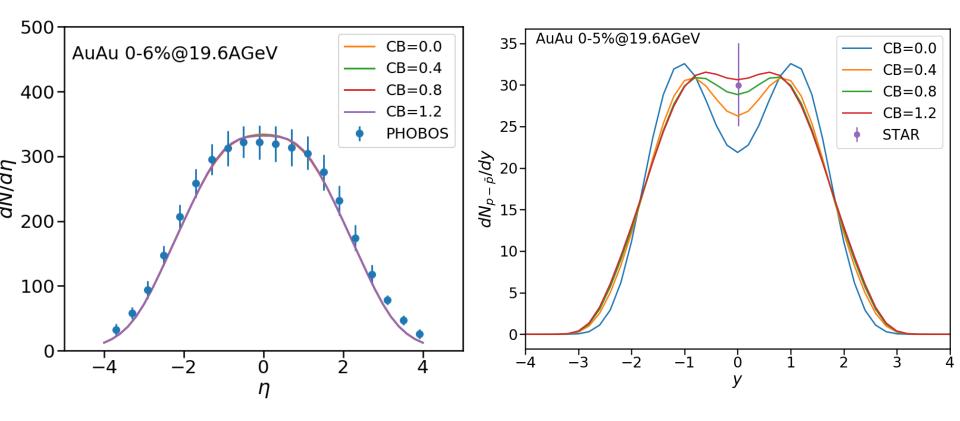
To test the numerical accuracy of new CLVisc code, we compare our numerical results with both analytical solutions of the hydrodynamic equations and other independent codes.

Gubser flow: strong radial flow, longitudinal invariance in conformal system.

8

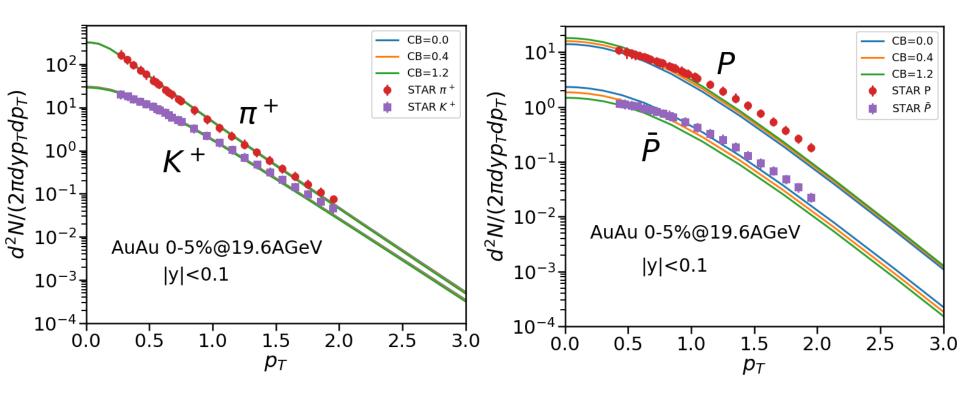

Longitudinal: (1+1)D Monnai's code

In longitudinal direction, we compare between the CLVisc's numerical results and (1+1) D hydrodynamic code by Monnai.


$$\Delta^{\mu\nu}DV_{\mu} = -\frac{1}{\tau_{V}}\left(V^{\mu} - \kappa_{B}\nabla^{\mu}\frac{\mu}{T}\right)$$
where $\kappa_{B} = \frac{0.2n}{\mu_{B}}$ $\tau_{V} = \frac{0.2}{T}$

Denicol, Gabriel S. et al. Phys.Rev. C98 (2018) no.3, 034916 arXiv:1804.10557 [nucl-th] Monnai, Akihiko Phys.Rev. C86 (2012) 014908 arXiv:1204.4713 [nucl-th]

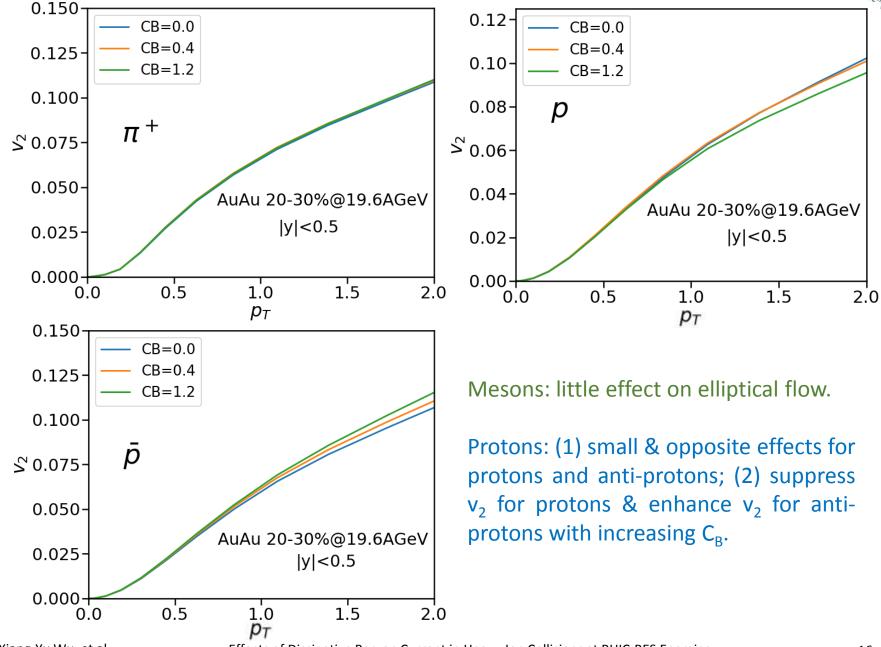
Particle yield


The effects of baryon current diffusion on pseudo-rapidity distribution of charged hadrons is negligible.

Larger baryon current diffusion will transport more net baryons to mid-rapidity.

Xiang-Yu Wu, et al.

p_T spectra



The meson spectra are insensitive to different baryon dissipative coefficient C_B . The small & opposite effects are observed for proton and anti-proton spectra. Steeper spectra for p and flatter spectra for anti-p when the C_B is larger.

Xiang-Yu Wu, et al.

Elliptical flow

Conclusion

Extend the CLVisc hydrodynamic model to include net baryon charge conservation and dissipative baryon current using the equation of state from NEOSB.

The effects of baryon current diffusion:

The pseudo-rapidity distribution of charged hadrons and the p_T spectra & elliptical flows of mesons are insensitive to C_B .

The rapidity distribution of net-protons has strong dependence on C_B.

The baryon current diffusion provides small & opposite contributions to the p_T spectra and elliptical flows of protons and anti-protons.

Outlook:

Code-checking by comparing with MUSIC and BESHYDRO.

Apply CLVisc to different BES energies for searching the critical point.

Add hadron afterburner.

Xiang-Yu Wu, et al.