Identifying QCD transition in a hybrid model with deep learning

Yi-Lun Du (FIAS/NJU/UiB)

with K. Zhou, J. Steinheimer, A. Motornenko(FIAS), L-G. Pang, X-N. Wang(CCNU/LBL), H-S. Zong(NJU), and H. Stöcker(FIAS/GU/GSI)

Quark matter 2019 Nov 4-9, @ Wuhan

Outline

- Motivation: employ the deep learning technique
- Review: pure hydrodynamics study
- Hybrid model: hydro + cascade (arXiv:1910.11530)
- Summary & Outlook

Evolution of the fireball

C. Shen et al., Comput. Phys. Commun. 199, 61 (2016)

- Initial condition: Glauber, CGC...
- Equilibration time τ_0
- Strongly coupled fluid described by viscous hydrodynamics Input: EoS of QCD, viscousity $\eta/s...$
- $T_{\rm freeze-out}$ / switching
- Hadronic cascade (UrQMD, SMASH)

Conventional observables

Strongly depends on initial stage fluctuations and other parameters

Analogy with pattern recognition

QCD transition and quark-gluon plasma

CAUTION: model (e.g. event generators) dependence in training

Hydrodynamics: Training dataset

Final Spectra for charged pions at mid-rapidity : $\rho(p_T, \Phi) \equiv \frac{dN_i}{dY p_T dp_T d\Phi} = g_i \int_{\sigma} p^{\mu} d\sigma_{\mu} f_i$

	TRAINING	$\eta/s = 0$		$\eta/s=0.08$	
	DATASET	EOSL	EOSQ	EOSL	EOSQ
RHIC	Au-Au $\sqrt{s_{NN}}=200{\rm GeV}$	7435	5328	500	500
LHC	Pb-Pb $\sqrt{s_{NN}} = 2.76 \mathrm{TeV}$	4967	2828	500	500

CLVisc 3+1 D viscous hydrodynamics with AMPT initial conditions

 $\succ au_0$ is 0.4 fm for Au-Au STAR and 0.2 fm for Pb-Pb

T_freeze-out is 137 MeV

~22000 events, doubled by left-right flipping along \phi, 10% for validation during the training

CLVisc (3+1) D viscous hydro package: L.-G. Pang, Q. Wang, and X.-N. Wang, Phys. Rev. C 86, 024911 (2012)

Testing dataset

TESTING DATASET GROUP 1 : iEBE-VISHNU + MC-Glauber									
Centrality:	$\eta/s \in [0, 0.05] \ \eta/s \in (0, 0.05]$		(0.05, 0.10]	$\eta/s =$	(0.10, 0.16]				
10-60%	EOSL	EOSQ	EOSL	EOSQ	EOSL	EOSQ			
Au-Au $\sqrt{s_{\rm NN}}=200~{\rm GeV}$	650	850	900	750	200	950			
Pb-Pb $\sqrt{s_{\rm NN}} = 2.76 {\rm ~TeV}$	500	650	600	644	499	150			
TESTING DATASET GROUP 2 : CLVisc + IP-Glasma									
Au-Au $\sqrt{s_{\rm NN}}=200~{\rm GeV},b\lesssim\!\!8~{\rm fm}$		EOSL		EOSQ					
$\eta/s = 0$	4164			4752					
$\eta/s = 0.08$		1173		864					

- iEBE-VISHNU (C. Shen et al., Comput. Phys. Commun. 199, 61 (2016)):
 (2+1) D viscous hydro package with different initial condition (MC-Glauber)
- $\tau_0 = 0.6 \text{ fm}; \ \eta/s \in [0, 0.16]$
- $T_$ freeze-out: \in [115, 142] MeV for iEBE-VISHNU; 137 MeV for CLVisc+IP-Glasma

DCNN architecture

Validation & Testing results

TESTING DATA	GROUP 0	GROUP 1	GROUP 2
Number of events	4000	7343	10953
Accuracy	$99.88 \pm 0.04\%$	$93.46 \pm 1.35\%$	$93.91 \pm 3.92\%$

- on average ~ 95% prediction accuracy → the trained CNN model identifies the type of QCD transition solely(!) from the raw spectra
- The performance is ROBUST against: initial conditions, η/s , τ_0 , T_freeze-out \rightarrow model independent!

Nature Commun 9, 210 (2018)

Hybrid model: more realistic circumstances

Couple (2+1) D viscous hydro model (VISHNew) with hadronic cascade model (UrQMD), where probabilistic scatterings and resonance decays are involved.

 * Smooth sampled distributions from hydrodynamics ightarrow

- Event-by-event spectra, with $T_{sw} = 137 \text{ MeV}$
- Cascade-coarse-grained spectra, with $T_{sw} = 137 \text{ MeV}$
- Events-fine-averaged spectra, with $T_{sw} = 137 \text{ MeV}$
- Event-by-event spectra, with $T_{sw} > 150~{
 m MeV}$
- Cascade-coarse-grained spectra, with $T_{sw} > 150 \text{ MeV}$
- Events-fine-averaged spectra, with $T_{sw} > 150 \text{ MeV}$

Deeper CNN architecture

There are overall 203194 trainable and 120 non-trainable parameters in our neural network.

Training data, with $T_{sw} = 137 \text{ MeV}$

TRAINING DATASET1							
Centrality bin	EOSL	EOSQ					
4%-5%	2539	2540					
14% - 15%	1022	1024					
20%-21%	2814	2816					
30%-31%	2560	2560					
40%-41%	1024	1024					
50%-51%	896	1024					

TABLE I: Training dataset I: numbers of $\rho(p_T, \Phi)$ generated by the iEBE-VISHNU package with the Glauber initial conditions in the centrality range 0-60%. Ratio of shear viscosity to entropy enosity $\eta'_{SNN} = 0.08$, equilibration time $\tau_0 = 0.5$ fm/c. The freeze-out temperature is set to be 137 MeV. Pb-Pb $\sqrt{S_{NN}} = 2.76$ TeV.

TRAINING DATASET2							
Centrality bin	EOSL	EOSQ					
0%-1%	979	1024					
10%-11%	2560	2560					
20%-21%	1024	1024					
30%-31%	1024	1024					
40%-41%	2560	2560					
50%-51%	2816	2816					

TABLE II: Training dataset 2: numbers of $\rho(p_T, \Phi)$ generated by the iEBE-VISINU package with the Glauber initial conditions in the centrality range 0-60%. Ratio of shear viscosity to entropy density $\eta/s = 0.00$, equilibration time $\tau_0 = 0.4$ fm/c. The freeze-out temperature is set to be 137 MeV. Au-Au $\sqrt{S_{NN}} = 200$ GeV.

Event-by-event p_T spectra and elliptic flow v_2

These events are generated in different centrality bins with $T_{sw} = 137$ MeV in two collision systems.

30-events-fine-averaged p_T spectra and elliptic flow v_2

These events are generated in different centrality bins with $T_{sw} = 137$ MeV in two collision systems.

Prediction accuracy and loss

A clear hierarchy is observed in the prediction accuracy when using three different spectra as input for the network, which are around 80%, 90% and 99%, respectively.

Testing results, with event-fine-averaged spectra

PREDICTIVE ACCURACY FOR TESTING DATASETS 1									
Centrality bin	$\sqrt{s_{NN}}$ [TeV]	Ini. Cond.	$\tau_0 (\text{fm/c})$	η/s	T_{sw}	L-EOS	Q-EOS	Accuracy	
15% - 16%	Au+Au 0.2	MC-G	0.4	0.00	141 MeV	512	512	89.1%	
15%-16%	Au+Au 0.2	MC-G	0.4	0.00	140 MeV	2560	2560	95.6%	
45%-46%	Au+Au 0.2	MC-G	0.6	0.12	130 MeV	1024	1024	100%	
7%-8%	Pb+Pb 2.76	MC-G	0.6	0.12	130 MeV	1280	1279	99.8%	
17%-18%	Pb+Pb 2.76	MC-G	0.6	0.12	130 MeV	2560	2560	98.1%	
25%-26%	Pb+Pb 2.76	MC-G	0.6	0.12	130 MeV	2560	2560	97.4%	
25%-26%	Pb+Pb 2.76	MC-G	0.6	0.16	130 MeV	1024	1024	97.8%	

Table B.4: Predictive accuracy on the testing datasets 1: 30-events-fine-averaged spectra $\rho_a(p_T, \Phi)$ generated with MC-Glauber initial conditions and different $\sqrt{s_{NN}}$, η/s , τ_0 , and T_{sw} in the centrality range 0-50%.

PREDICTIVE ACCURACY FOR TESTING DATASETS 2									
Centrality bin	$\sqrt{s_{NN}}$ [TeV]	Ini. Cond.	$\tau_0 (\text{fm/c})$	η/s	T_{sw}	L-EOS	Q-EOS	Accuracy	
15%-16%	Au+Au 0.2	MCKLN	0.6	0.12	137 MeV	512	256	98.6%	
35%-36%	Au+Au 0.2	MCKLN	0.6	0.12	142 MeV	896	896	99.4%	
10%-11%	Pb+Pb 2.76	MCKLN	0.6	0.12	142 MeV	150	150	100%	
25%-26%	Pb+Pb 2.76	MCKLN	0.6	0.12	137 MeV	256	256	84.4%	

Table B.5: Predictive accuracy on the testing datasets 2: 30-events-fine-averaged spectra $\rho_a(p_T, \Phi)$ generated with MCKLN initial conditions and the different $\sqrt{s_{NN}}$, η/s , τ_0 , and T_{sw} in the centrality range 0-40%.

The validation and testing accuracy can be achieved up to 99% and 96%, respectively, on average, which are robust against different initial condition, η/s , τ_0 , T_{fo} , $\sqrt{S_{NN}}$.

Overall results

Summary

- The predictive power of CNN by training event-by-event spectra decreases down to 80% (compared with pure hydro case 99%), due to stochastic particlization, hadronic cascade and resonance decays.
- The predictive power of CNN by training cascade-coarse-grained or events-fine-averaged spectra improves profoundly with good generalizability.
- With freeze-out T increased, more hadronic cascade are involved, the predictive power of CNN by training event-by-event and cascade-coarse-grained decrease slightly.
- Existence of an "EoS-meter" on identifying the QCD phase transition from the final spectrum $\rho(p_T, \phi)$ even though probabilistic hadronic rescatterings and resonance decays are included.

Outlook

- Verify model dependence!
- Extraction of transport coefficient η/s
- Classification of initial conditions

Thank you for your attention!

All-events-fine-averaged p_T spectra and elliptic flow v_2

These events are generated in centrality bin 14-15% with $T_{sw} = 137$ MeV in one collision system.

All-events-fine-averaged p_T spectra and elliptic flow v_2

These events are generated in different centrality bins with $T_{sw} = 137$ MeV in two collision systems.

Derivatives of all-events-fine-averaged p_T spectra

These events are generated in different centrality bins with $T_{sw}=137\ {\rm MeV}$ in two collision systems.

What's deep learning?

Artificial Intelligence (AI)

Machine Learning (ML)

- PCA, kNN, k-means
- SVM

•

- Bayesian analysis
- Decision Tree
- Random Forest
- Neural Network
- Ensemble method

Deep Learning (DL)

Learning multiple levels of representations using hierarchical or recurrent structures

Big Data
 GPU parallel
 New architecture

2006 Geoffrey Hinton

"hello world" example of deep neural network

$$z_j = \sum_{i=1}^N x_i w_{ij} + b_j$$

Linear operations:rotating, boosting,... increasing or decreasing dimensions

$$l(\theta) = \sum_{i} (\hat{y}_i - y_i)^2$$

Mean square error (simplest loss function) with \hat{y}_i the predicted value and y_i the true value

$$h_j = \sigma(z_j)$$

Nonlinear activation function: correlation/links

$$heta'= heta-\epsilonrac{\partial l(heta)}{\partial heta}$$

SGD for parameter update to minimize loss function \$24/27\$

Overfitting problem

of parameters or training time

Too many parameters may easily overfit training dataset

Convolution neural network

Advantage: scaling, rotating, translation invariant features can be learned since only subregion is connected to the filter/kernel which scan the whole input to feel the 2D/3D structure and local statistics.

CNN vs FCN in image recognition

- Local features are broken in flattened representation
- 2D/3D filters with certain weights scan the whole picture to capture different features in neighborhood: edges, specific color, blurring noise...
- Convolutional and Pooling layer: reduce No. of dimension and parameters
- The deeper layer goes, the more abstract features can be learned
- FCN: converted to class of input data and improve the generalizablity "firewall"