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Outline

Outline

Motivation: employ the deep learning technique

Review: pure hydrodynamics study

Hybrid model: hydro + cascade (arXiv:1910.11530)

Summary & Outlook
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Motivation

Evolution of the fireball

C. Shen et al., Comput. Phys. Commun.
199, 61 (2016)

Initial condition: Glauber, CGC...

Equilibration time τ0

Strongly coupled fluid described by viscous
hydrodynamics - Input: EoS of QCD,
viscousity η/s...

T freeze-out / switching

Hadronic cascade (UrQMD, SMASH)
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Motivation

Conventional observables

Strongly depends on initial stage fluctuations and other parameters
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Motivation

Analogy with pattern recognition

QCD transition and quark-gluon plasma

CAUTION: model (e.g. event generators) dependence in training
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Hydrodynamics

Hydrodynamics: Training dataset

CLVisc (3+1) D viscous hydro package: L.-G. Pang, Q. Wang, and X.-N. Wang, Phys. Rev. C 86, 024911
(2012)
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Hydrodynamics

Testing dataset

iEBE-VISHNU (C. Shen et al., Comput. Phys. Commun. 199, 61 (2016)):
(2+1) D viscous hydro package with different initial condition (MC-Glauber)

τ0 = 0.6 fm; η/s ∈ [0, 0.16]

T freeze-out: ∈ [115, 142] MeV for iEBE-VISHNU; 137 MeV for
CLVisc+IP-Glasma
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Hydrodynamics

DCNN architecture
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Hydrodynamics

Validation & Testing results

on average ∼ 95% prediction accuracy → the trained CNN model identifies the
type of QCD transition solely(!) from the raw spectra

The performance is ROBUST against: initial conditions, η/s, τ0, T freeze-out
→ model independent!

Nature Commun 9, 210 (2018)
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Hybrid model

Hybrid model: more realistic circumstances

Couple (2+1) D viscous hydro model (VISHNew) with hadronic cascade model
(UrQMD), where probabilistic scatterings and resonance decays are involved.

* Smooth sampled distributions from hydrodynamics →
Event-by-event spectra, with Tsw = 137 MeV
Cascade-coarse-grained spectra, with Tsw = 137 MeV
Events-fine-averaged spectra, with Tsw = 137 MeV

Event-by-event spectra, with Tsw > 150 MeV
Cascade-coarse-grained spectra, with Tsw > 150 MeV
Events-fine-averaged spectra, with Tsw > 150 MeV

10 / 27



Hybrid model

Deeper CNN architecture
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There are overall 203194 trainable and 120 non-trainable parameters in our neural
network.
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Hybrid model

Training data, with Tsw = 137 MeV
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Hybrid model

Event-by-event pT spectra and elliptic flow v2
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These events are generated in different centrality bins with Tsw = 137 MeV in two
collision systems.
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Hybrid model

30-events-fine-averaged pT spectra and elliptic flow v2
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These events are generated in different centrality bins with Tsw = 137 MeV in two
collision systems.
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Hybrid model

Prediction accuracy and loss
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A clear hierarchy is observed in the prediction accuracy when using three different
spectra as input for the network, which are around 80%, 90% and 99%, respectively.
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Hybrid model

Testing results, with event-fine-averaged spectra

The validation and testing accuracy can be achieved up to 99% and 96%,
respectively, on average, which are robust against different initial condition, η/s, τ0,
Tfo,

√
SNN .
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Hybrid model

Overall results
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Summary

The predictive power of CNN by training event-by-event spectra decreases down
to 80% (compared with pure hydro case 99%), due to stochastic particlization,
hadronic cascade and resonance decays.

The predictive power of CNN by training cascade-coarse-grained or
events-fine-averaged spectra improves profoundly with good generalizability.

With freeze-out T increased, more hadronic cascade are involved, the predictive
power of CNN by training event-by-event and cascade-coarse-grained decrease
slightly.

Existence of an “EoS-meter” on identifying the QCD phase transition from the
final spectrum ρ(pT , φ) even though probabilistic hadronic rescatterings and
resonance decays are included.
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Outlook

Verify model dependence!

Extraction of transport coefficient η/s

Classification of initial conditions

Thank you for your attention!
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Back up

All-events-fine-averaged pT spectra and elliptic flow v2
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These events are generated in centrality bin 14-15% with Tsw = 137 MeV in one
collision system.
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Back up

All-events-fine-averaged pT spectra and elliptic flow v2
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These events are generated in different centrality bins with Tsw = 137 MeV in two
collision systems.
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Back up

Derivatives of all-events-fine-averaged pT spectra
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These events are generated in different centrality bins with Tsw = 137 MeV in two
collision systems.
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Back up

What’s deep learning?

Geoffrey Hinton
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Back up

“hello world” example of deep neural network

Fully Connected Network (FCN)

Linear operations:rotating, boosting,... increasing or decreasing
dimensions

Mean square error (simplest loss function) with ŷi the predicted
value and yi the true value

Nonlinear activation function: correlation/links

SGD for parameter update to minimize loss function
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Back up

Overfitting problem

Too many parameters may easily overfit training dataset
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Back up

Convolution neural network

Advantage: scaling, rotating, translation invariant features can be learned since only
subregion is connected to the filter/kernel which scan the whole input to feel the
2D/3D structure and local statistics.
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Back up

CNN vs FCN in image recognition

Local features are broken in flattened representation

2D/3D filters with certain weights scan the whole picture to capture different
features in neighborhood: edges, specific color, blurring noise...

Convolutional and Pooling layer: reduce No. of dimension and parameters

The deeper layer goes, the more abstract features can be learned

FCN: converted to class of input data and improve the generalizablity -
“firewall”
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