Measurement of cumulants of conserved charge multiplicity distributions in Au+Au collisions from the STAR experiment

Ashish Pandav (For the STAR collaboration)
National Institute of Science Education and Research, HBNI, INDIA

Outline
1. Introduction
2. Observable
3. The STAR Experiment
4. Higher Moment Analysis
5. Results
6. Summary
Introduction: QCD Phase Diagram & BES

Goal: Study the phase diagram of QCD.
BES: Varying beam energy varies Temperature (T) and Baryon Chemical Potential (μ_B). Fluctuations in various observables are sensitive to phase transition and critical point.

Results from new data: Au+Au collisions at $\sqrt{s_{NN}} = 54.4$ GeV

Higher moments or cumulants of net-particle distributions (B, Q, S).

\[
\begin{align*}
C_1 &= <N> \\
C_2 &= <(\delta N)^2> \\
C_3 &= <(\delta N)^3> \\
C_4 &= <(\delta N)^4> - 3 <(\delta N)^2>^2
\end{align*}
\]

Higher order cumulants of conserved number distributions are sensitive observables.\(^*\) Related to the correlation length and susceptibilities.

\[
\begin{align*}
C_2 &\sim \xi^2 \\
C_4 &\sim \xi^7
\end{align*}
\]

\(\frac{\chi_q^{(4)}}{\chi_q^{(2)}} = \kappa \sigma^2 = \frac{C_{4,q}}{C_{2,q}} \quad \frac{\chi_q^{(3)}}{\chi_q^{(2)}} = S\sigma = \frac{C_{3,q}}{C_{2,q}}\)

Kurtosis of net-proton in the presence of CP

\[\sqrt{\bar{g}}\]

\[\omega_4\]

\(\mu_B\)

The Sixth-Order Cumulant

Goal: Identification of O(4) chiral criticality on the phase boundary.

<table>
<thead>
<tr>
<th>Freeze-out conditions</th>
<th>χ_4^B / χ_2^B</th>
<th>χ_6^B / χ_2^B</th>
<th>χ_4^Q / χ_2^Q</th>
<th>χ_6^Q / χ_2^Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRG</td>
<td>1</td>
<td>1</td>
<td>~2</td>
<td>~10</td>
</tr>
<tr>
<td>QCD: $T_{\text{freeze}} / T_{pc} \leq 0.9$</td>
<td>≥ 1</td>
<td>≥ 1</td>
<td>~2</td>
<td>~10</td>
</tr>
<tr>
<td>QCD: $T_{\text{freeze}} / T_{pc} \approx 1$</td>
<td>~ 0.5</td>
<td>< 0</td>
<td>~1</td>
<td>< 0</td>
</tr>
</tbody>
</table>

The C_6 of baryon number and electric charge fluctuations remain negative at the chiral transition temperature.
Main Detectors: Time Projection Chamber and Time-of-Flight. **Full azimuthal angle coverage.**

$|\eta| < 1$ coverage.

Uniform acceptance in p_T vs. rapidity at midrapidity for all particles.

Data Set

<table>
<thead>
<tr>
<th>Collision system and energy</th>
<th>Au+Au at $\sqrt{s_{NN}} = 54.4$ GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baryon Chemical Potential</td>
<td>~ 83 MeV</td>
</tr>
<tr>
<td>No. of events</td>
<td>~ 550 Millions</td>
</tr>
<tr>
<td>Collision centrality</td>
<td>0-5%, 5-10%, 10-20%, 20-30%, 30-40%, 40-50%, 50-60%, 60-70%, 70-80%</td>
</tr>
<tr>
<td>Centrality</td>
<td>Using charged particle multiplicity</td>
</tr>
<tr>
<td>Z Vertex</td>
<td>+/- 30 cm</td>
</tr>
<tr>
<td>Vertex radial position</td>
<td>2 cm</td>
</tr>
<tr>
<td>Detectors for PID</td>
<td>Time Projection Chamber and Time-of-Flight</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Particle Type</th>
<th>Transverse Momentum Range (p_T)</th>
<th>Rapidity (y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net-proton</td>
<td>Protons and anti-protons ($p & \bar{p}$)</td>
<td>0.4 to 2.0 GeV/c</td>
<td>$</td>
</tr>
<tr>
<td>Net-kaon</td>
<td>Kaons ($K^+ & K^-$)</td>
<td>0.2 to 1.6 GeV/c</td>
<td>$</td>
</tr>
<tr>
<td>Net-charge</td>
<td>Protons and anti-protons ($p & \bar{p}$) Kaons ($K^+ & K^-$) Pions ($\pi^+ & \pi^-$)</td>
<td>0.4 to 2.0 GeV/c 0.2 to 1.6 GeV/c 0.2 to 1.6 GeV/c</td>
<td>$</td>
</tr>
</tbody>
</table>
Centrality Selection

- Use charged particle multiplicity excluding particles of interest to avoid autocorrelation effects.

- Charged particle multiplicity for net-proton analysis (Refmult-3) fitted with Glauber MC Model.

- Corrected for luminosity and Z-vertex effects.

- Compared to the MC Glauber model.

<table>
<thead>
<tr>
<th>Centrality</th>
<th>Refmult-3 cuts</th>
<th><Npart></th>
<th>Events (Millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-5%</td>
<td>621</td>
<td>346</td>
<td>33</td>
</tr>
<tr>
<td>5-10%</td>
<td>516</td>
<td>292</td>
<td>34</td>
</tr>
<tr>
<td>10-20%</td>
<td>354</td>
<td>228</td>
<td>70</td>
</tr>
<tr>
<td>20-30%</td>
<td>237</td>
<td>161</td>
<td>69</td>
</tr>
<tr>
<td>30-40%</td>
<td>151</td>
<td>111</td>
<td>69</td>
</tr>
<tr>
<td>40-50%</td>
<td>90</td>
<td>73</td>
<td>67</td>
</tr>
<tr>
<td>50-60%</td>
<td>50</td>
<td>45</td>
<td>64</td>
</tr>
<tr>
<td>60-70%</td>
<td>24</td>
<td>26</td>
<td>60</td>
</tr>
<tr>
<td>70-80%</td>
<td>10</td>
<td>13</td>
<td>57</td>
</tr>
</tbody>
</table>

Au+Au: $\sqrt{s_{NN}} = 54.4$ GeV
Event-by-Event Raw Net-Particle Distributions

- From peripheral to central collisions:
 - Mean of net-particle distributions increase.
 - Width (or the sigma) of the distributions also increase.

- Net-charge distribution has the largest width for a given centrality. $\frac{\sigma_r}{\sqrt{N_{evts}}}$
Analysis Techniques (Corrections And Uncertainties)

- Reconstruction efficiency correction - binomial model

Net-proton Cumulants

<table>
<thead>
<tr>
<th>Cumulant</th>
<th>σ_{stat} (0-5%)</th>
<th>σ_{sys} (0-5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td>0.008%</td>
<td>6%</td>
</tr>
<tr>
<td>C_2</td>
<td>0.04%</td>
<td>5%</td>
</tr>
<tr>
<td>C_3</td>
<td>1%</td>
<td>7%</td>
</tr>
<tr>
<td>C_4</td>
<td>9%</td>
<td>22%</td>
</tr>
</tbody>
</table>

Centrality bin width correction

- Statistical uncertainties:
 - Bootstrap method
 - Delta theorem method

- Sources of systematic uncertainties:
 - Particle identification
 - Background estimates (DCA)
 - Track quality cuts
 - Efficiency variation

Centrality Dependence of Net-Proton Cumulants

Bars and brackets are statistical and systematic uncertainties respectively.

Net-proton cumulants up to the fourth order increases with average number of participant nucleons.
Net-charge cumulants up to the fourth order increases with average number of participant nucleons.
Centrality Dependence of Net-Kaon Cumulants

Net-kaon cumulants up to the fourth order increases with average number of participant nucleons.
Centrality Dependence of Cumulant Ratios

C_2/C_1 decreases from peripheral to central collisions. C_3/C_2 and C_4/C_2 show weak dependence on centrality. Only qualitative agreement with models expectations observed.
Energy Dependence of Cumulant Ratios

STAR Preliminary
Net-proton
Au+Au collisions at RHIC
$0.4 < p_T < 2 \text{ GeV}/c$, $|y|<0.5$

- $0\text{-}5\%$
- $70\text{-}80\%$

STAR Preliminary
Net-charge
Au+Au collisions at RHIC

- $0\text{-}5\%$
- $70\text{-}80\%$

STAR Preliminary
Net-kaon
Au+Au collisions at RHIC

- $0\text{-}5\%$
- $70\text{-}80\%$

$\kappa \sigma^2$ measurement at 54.4 GeV agrees with the trend from BES-I results. Form precise baseline for critical fluctuation measurements at lower beam energies.

STAR: PRL, 113, 092301 (2014)
STAR: PLB, 785, 551 (2018)
Centrality Dependence of Cumulant Ratio C_6/C_2

For most central collisions (0-40%)
$C_6/C_2 < 0$ at 200 GeV
$C_6/C_2 > 0$ at 54.4 GeV

Observation of negative sign of C_6/C_2 of net-proton distribution for most central collisions at 200 GeV. Could be the experimental evidence of crossover phase transition.

See Toshihiro Nonaka’s poster: id #586 (QF16)
The first measurements of net-proton, net-kaon and net-charge cumulants (up to the fourth order) presented for Au+Au collisions at $\sqrt{s_{NN}} = 54.4$ GeV.

The cumulants of net-proton, net-charge and net-kaon up to the fourth order increase with average number of participant nucleons.

The cumulant ratios of net-particle:
- C_2/C_1 shows a strong centrality dependence.
- $C_3/C_2, C_4/C_2$ and C_6/C_2 have a weak centrality dependence.

The centrality dependence of cumulant ratios is only qualitatively reproduced by the UrQMD and HIJING models. Quantitative differences exist.

The C_6/C_2 of net-proton and net-charge distributions for central Au+Au collisions at 54.4 GeV are positive while that for 200 GeV, C_6/C_2 of net-proton distribution is negative (most central). The observed negative sign of C_6/C_2 at 200 GeV could be experimental evidence of cross-over phase transition.
See Yi Yang’s Talk : id #388 (Tue 16:20)

Outlook: Beam Energy Scan Phase – II at RHIC

<table>
<thead>
<tr>
<th>√s (GeV)</th>
<th>Statistics (Millions) – BES-I</th>
<th>Statistics (Millions) – BES-II</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.7</td>
<td>~4</td>
<td>~100</td>
</tr>
<tr>
<td>9.1</td>
<td>~0.003</td>
<td>~160</td>
</tr>
<tr>
<td>11.5</td>
<td>~12</td>
<td>~230</td>
</tr>
<tr>
<td>14.5</td>
<td>~20</td>
<td>~300</td>
</tr>
<tr>
<td>19.6</td>
<td>~36</td>
<td>~400</td>
</tr>
<tr>
<td>27</td>
<td>~70</td>
<td>~500</td>
</tr>
</tbody>
</table>

iTPC
eTOF

<table>
<thead>
<tr>
<th>iTTPC</th>
<th>EPD</th>
<th>eTOF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Larger rapidity coverage</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Better dE/dx resolution</td>
<td>Centrality determination at forward rapidity</td>
<td>PID extended to forward rapidity</td>
</tr>
<tr>
<td>Lower momentum acceptance > 0.1 GeV/c</td>
<td>Better event plane resolution</td>
<td>Better particle identification</td>
</tr>
</tbody>
</table>

Physics Impact: Higher moments and Dilepton

Centrality with the EPD
See Yuri Sato’s poster : id #644 (FF35)

STAR preliminary
Au+Au 27GeV in 2018

QM2019 - Ashish Pandav
THANK YOU
BACK UP
Centrality Dependence of Cumulant Ratio C_6/C_2 of Net-Charge Distribution for Au+Au Collisions at $\sqrt{s_{NN}} = 200$ GeV

C_6/C_2 of net-charge at 200 GeV is negative for most central collisions (0-10% centrality). Consistent with zero with statistical uncertainty.