Feasibility studies of conserved charge fluctuations in Au-Au collisions with CBM

Subhasis Samanta (for the CBM Collaboration)

National Institute of Science Education and Research, HBNI, Jatni, India

Outline

- \star Introduction
- \star CBM experiment
- ★ Analysis details
- \star Results
 - Net-proton cumulants
 - Net-charge cumulants
- * Summary

QCD phase diagram

- $\star\,$ Study QCD phase diagram at high net-baryon density
 - At high net-baryon density and low temperature, first order phase transition is expected which will end at a critical point (CP)
 - CBM program supplements the Beam Energy Scan Program at RHIC, NA61 at SPS, NICA at JINR

Ref: CBM: EPJA 53, 60 (2017); PRC 74, 047901 (2006)

S Samanta (For the CBM Collaboration)

Observables for CP search

Cumulants

 $N_q = N_{q+} - N_{q-} \,\, {
m and} \,\, \delta N_q = N_q - \left< N_q \right>$ q can be any conserved quantum number

(net-baryon, net-charge, net-strangeness etc.)

Mean, variance, skewness, kurtosis

$$M=C_1,~~\sigma^2=C_2,~~S=rac{C_3}{\sigma^3},~~\kappa=rac{C_4}{\sigma^4}$$

- * Higher moments of conserved quantities are sensitive to correlation length $\langle (\delta N_q)^2 \rangle \sim \zeta^2 \quad \langle (\delta N_q)^3 \rangle \sim \zeta^{4.5} \quad \langle (\delta N_q)^4 \rangle \sim \zeta^7$
- $\star\,$ Non-monotonic variations of $S\sigma=C_3/C_2,\,\kappa\sigma^2=C_4/C_2$ with beam energy are believed to be good signatures of CP

Ref: STAR: PRL 112, 032302 (2014); PRL 102, 032301 (2009)

S Samanta (For the CBM Collaboration)

CBM experiment

- \star Fixed target experiment
- $\star\,$ SIS 100: Au + Au collision, $\sqrt{s_{NN}} = 2.7 4.9~{\rm GeV}$
- \star High interaction rate
- \star High statistics data
- ★ Density in the center of the fireball expected to exceed few times greater than density of nucleus

Challenges of higher moments measurements at CBM

 \star Particle identification

 \star Non-trivial variations of efficiency \times acceptance with p_T and rapidity (proper method of corrections needed)

 \star Proper vertex identification in multiple collisions

Ref: CBM overview talk at QM2019 by Viktor Klochkov; EPJA 53, 60 (2017); The CBM Physics Book, Lect. Notes Phys. 814, Springer 2011; PRC 75 (2007) 034902

Simulation details

- \star Event generators: UrQMD
- ★ Collision: Au+Au
- * Energy: $E_{lab} = 10 \text{ AGeV}$ ($\sqrt{s_{NN}} = 4.72 \text{ GeV}$)
- * Events: 5 M (minimum bias)

Detectors used:

MVD, STS, RICH, TOF MVD: Vertex information STS: Momentum information RICH: Electron identification TOF: Hadron identification **Detector acceptance:** $1.5 < n < 3.8 (25^\circ > \theta > 2.5^\circ)$

TOF ECAL TRD RICH PSD STS MVE MUCH sis100 setup

S Samanta (For the CBM Collaboration)

Particle identification using TOF

Centrality selection using STS

(Multiplicities are uncorrected for efficiency and acceptance)

- $\star\,$ Clean particle identification for bulk properties studies
- $\star\,$ To remove auto correlation in net-proton study, charge particles selected excluding p,\bar{p}

S Samanta (For the CBM Collaboration)

Proton (anti-proton) selection

- ★ Purity > 96 %
- * Efficiency decreases at high p_T due to the detector acceptance
- $\star\,$ Efficiency for 0-5 % and 70 -80 % centralities are $\simeq 62$ % and $\simeq 46$ %

Proton (anti-proton) multiplicity distributions

Uncorrected distributions for efficiency and acceptance

S Samanta (For the CBM Collaboration)

Proton (anti-proton) multiplicity distributions

(Uncorrected distributions for efficiency and acceptance)

- \star Proton multiplicities follow negative binomial distribution
- $\star~$ Number of \bar{p} is very less compared to p $(\bar{p}/p=7.8\times10^{-5}$ (0 -5 %), $\bar{p}/p=2.5\times10^{-4}$ (70 80 %) from UrQMD)
- \star Proton distributions are skewed more to the right side of the mean

S Samanta (For the CBM Collaboration)

Net-proton multiplicity distributions

Uncorrected for efficiency and acceptance

Centrality (%)	${ m N_{ch}}~(m^2 < 0.4~{ m GeV}^2/c^4$)
0-5	$ m N_{ch} \geq 71$
5-10	$60 \leq \mathrm{N_{ch}} < 71$
10-20	$44 \leq \mathrm{N_{ch}} < 60$
20-30	$32 \leq \mathrm{N_{ch}} < 44$
30-40	$23 \leq \mathrm{N_{ch}} < 32$
40-50	$16 \leq \mathrm{N_{ch}} < 23$
50-60	$10 \le N_{ch} < 16$
60-70	$6 \leq { m N_{ch}} < 10$
70-80	$4 \leq { m N_{ch}} < 6$

- $\star\,$ Mean and variance decreases from central towards the peripheral collisions
- $\star\,$ Distributions are skewed more to the right side of the mean

S Samanta (For the CBM Collaboration)

C_n of net-proton vs centrality (%)

Centrality bin width correction

 $C_n = \sum_r w_r C_{n,r}$ $w_r = rac{n_r}{\sum_r n_r}$ $\sum_r w_r = 1$ sum is over multiplicity bins

- * CBWC done to suppress volume fluctuations
- Statistical error estimation is done using Delta theorem

Ref: Advanced Theory of Statistics: Vol.1, London (1945); Asymptotic Theory of Statistics and Probability, Springer

(2008); JPG 39, 025008 (2012); JPG 40, 105104 (2013)

S Samanta (For the CBM Collaboration)

Correction of cumulants of net-proton using Unfolding method

Algorithm used: RooUnfoldBayes Relationship between measured and true distribution: y = Rxv = measured, x = true, R = response matrix

 \star 50 % events are used to construct R

*We are able to get back cumulants of 'True', even if the efficiency is non-binomial and has non-trivial dependence on p_T and rapidity

Ref: NIMA 362, 487 (1995)

S Samanta (For the CBM Collaboration)

No. of even 10

10

10

10

10

Net-charge multiplicity distributions and cumulants of net-charge

Uncorrected for efficiency and acceptance

S Samanta (For the CBM Collaboration)

Summary

- * Studied the feasibility of doing fluctuation analysis with conserved charges in Au+Au collisions at 10 AGeV with CBM detector using simulated events from UrQMD.
- Clean proton identification with high purity is possible and hence one can study the net-proton (proxy for net-baryon) higher order moments using CBM detector.
- $\star\,$ Centrality selection using charged particles other than proton and anti-protons is possible.
- * Efficiency and detector effects were corrected for using unfolding techniques and original distributions and cummulants recovered. This shows that using the CBM detector, higher moments of net-proton and net-charge can be studied.

Outlook

- $\star\,$ Similar studies in other SIS100 energies
- $\star\,$ Look forward to data from CBM at SIS100 energies in the year 2025

Thank you