Measurement of global spin alignment of K^{*0} and φ vector mesons using the STAR detector at RHIC

Subhash Singha

- Institute of Modern Physics Chinese Academy of Sciences, Lanzhou and Kent State University, Ohio
 - (For the STAR Collaboration)

This work in part supported by grant from DOE Office of Science

SAR

Office of Science

- Motivation
- Analysis method
- Results:

Spin alignment of K^{*0}

Summary and outlook

Outline

Comparison with φ meson (QM 2018) Comparison with ALICE results

Probe initial stages in HIC

F. Becattini, et. al., Phys Rev. C. 77, 024906 (2008) D. Kharzeev, Nucl Phys A803, 227 (2008)

- Initial large angular momentum (L) ~ 10⁴ħ
- Initial large magnetic field (**B**) ~ 10^{18} Gauss at RHIC
- Can polarize quarks in medium

Nature 548, 62 (2017) (STAR Collaboration) *Phys Rev C* 98, 14910 (2018) (STAR Collaboration)

• $P_H(\Lambda) \& P_H(\Lambda) > 0$ Positive vorticity

• $P_H(\Lambda) > P_H(\Lambda)$

Hints of magnetic coupling

First experimental access to study the vorticity of the medium

Vector meson spin alignment (ρ_{00})

Deviation of p₀₀ from (1/3) indicates spin alignment

K. Schiling et. al., Nucl. Phys. B 15 (1970) 397 Phys. Rev. C 77 (2008) 61902 (STAR Collaboration)

Subhash Singha, QM 2019

Angular momentum and magnetic field can induce spin alignment of vector mesons

Theoretical expectation of ρ_{00}

Vorticity	$\rho_{00}(\omega) < 1/3$	
Magnetic field	$\rho_{00}(B) > 1/3$	Electrically ne vector mesor
	$\rho_{00}(B) < 1/3$	Electrically ch vector meson
Hadronization	$\rho_{00}(\text{rec}) < 1/3$	Recombinatio
	$\rho_{00}(\text{frag}) > 1/3$	Fragmentatio
	Z. Liang et. al., Ph	ys. Lett. B629, 20 (2

<u>Characteristic of K^{*0} and φ:</u>

Species	K *0	φ
Quark content	ds	SS
Mass (MeV/c ²)	896	1020
Lifetime (fm/c)	4	45
Spin (J ^P)	1-	1-
Decays	Κπ	KK
Branching ratio	49%	66%

- Predominantly produced in primordial production • Negligible feed-down compared to Λ and Λ
- Λ spin polarization (P_H): Required knowledge of orientation of the angular momentum vector, estimated by deflection of spectators (can use 1st-order event plane)

K^{*0} and Φ

- Vector meson spin alignment (ρ_{00}):
 - Polarization direction not required.
 - Not subject to local cancellation.
 - (can use both 1st-order and 2nd-order event plane)

The STAR detector and analysis details

- Uniform acceptance, full azimuthal covera
- <u>TPC</u>: tracking, centrality and event plane
- <u>TPC+TOF</u>: particle identification

Subhash Singha, QM 2019

	collision system	Au+Au
	collision energy	54.4 and 200 G
	# of good events	520 and 350
	rapidity	y < 0.5
	background	rotation of daug
	polarization axis	perpendicular to 2 nd -order event p
ge	consistency check	3D-random ev plane

Report K^{*0} ρ_{00} as function of transverse momentum and centrality

The STAR detector and signal reconstruction

- Uniform acceptance, full azimuthal coverage
- <u>TPC</u>: tracking, centrality and event plane
- <u>TPC+TOF</u>: particle identification

Subhash Singha, QM 2019

- Rotational background subtraction
- mass/width consistent with published value
- K* yield is the area under the Breit-Wigner function

Analysis method

• Raw yield of K^{*0} is extracted from 5 cos θ^* bins

- Here polarization axis $(\hat{\mathbf{n}}_{RP})$ is the direction perpendicular to the TPC 2^{nd} -order event plane (Ψ_2)
- θ^* is the angle between the daughter (K+) momentum of K*⁰ in its rest frame and $\hat{\mathbf{n}}_{RP}$

1.0

Analysis method

• Yield of K^{*0} is corrected for efficiency and acceptance

- Observed ρ_{00}^{obs} is calculated from fitting the yield with function: $\frac{dN}{d(\cos\theta^*)} = N_0 \times \left[(1 - \rho_{00}^{obs}) + (3\rho_{00}^{obs} - 1)\cos^2\theta^* \right]$
- Observed ρ_{00}^{obs} is corrected for TPC event plane resolution (R)

$$\rho_{00} - \frac{1}{3} = \frac{4}{1+3R} (\rho_{00}^{\text{obs}} - \frac{1}{3})$$

A. Tang et. al., Phys Rev C 98, 044907 (2018)

1.0

- ρ₀₀ results from 3D-random plane consistent with 1/3 as expected
- plane resolutions

• Significant deviation of ρ_{00} from 1/3 is observed at low p_T for both 54.4 and 200 GeV

• ρ_{00} from TPC η -sub and full event plane are consistent despite of different event

For Au+Au 200 GeV, 10-60% centrality: TPC (Ψ_2) resolution ~ 0.55 for η -sub event plane TPC (Ψ_2) resolution ~ 0.77 for full event plane

• Non-trivial and opposite p_T dependence observed for K*⁰ and ϕ

- Trend for K^{*0} ρ_{00} is qualitatively consistent with the naive expectation from recombination/ fragmentation of polarized quarks [1] but the magnitude is much larger
- $\phi \rho_{00}$ does not fit into naive recombination/fragmentation picture [1]
- But it can be explained by the existence of coherent ϕ meson field [2]

- For peripheral collisions $\rho_{00} \sim 1/3$
- For midcentral collisions $\rho_{00} < 1/3$
- For central collisions ρ₀₀ close to 1/3

K^{*0} ρ₀₀ (centrality)

- For peripheral collisions $\rho_{00} \sim 1/3$
- For midcentral collisions $\rho_{00} < 1/3$
- For central collisions ρ_{00} close to 1/3
- Trend similar to angular momentum vs. centrality

K^{*0} ρ₀₀ (centrality)

Angular momentum vs. impact parameter

- precision
- 1-1.5σ

K*⁰ ρ₀₀ : RHIC vs. LHC

• p_T and centrality dependence of p_{00} at RHIC is similar to LHC energies but with much better

• At low p_T and midcentral collisions hint that LHC measurements are lower than RHIC by

Summary of ρ ₀₀ /P _H measurements from RHIC and LHC				
· """"""""""""""""""""""""""""""""""""""		For midcentral collisions		
Species	Quark content	JP	роо/Рн at top-RHIC	ρ₀₀/Рн at LHC
K* 0	ds	1-	ρ ₀₀ < 1/3 (~4σ)	ρ ₀₀ < 1/3 (~3σ)
φ	SS	1-	ρ ₀₀ > 1/3 (~3σ)	ρ ₀₀ < 1/3 (~2σ)
Λ	uds	1/2+	Рн > 0 (~4σ)	P _H ~ 0 (~1σ)

- From current theoretical understanding $P_H \propto P_q$, while $\rho_{00} \propto P_q^2$
- Given the small P_H values observed at top RHIC and LHC energies, ρ_{00} expected to be close to 1/3
- Hence, the current ρ_{00} measurements are surprising!
- Z. Liang et. al., Phys. Lett. B629, 20 (2005) Y. Yang et. al., Phys. Rev. C 97, 034917 (2018) X. Sheng et. al., arXiv:1910.13684 (2019)
- ρ₀₀ can depend on hadronization, vorticity, electromagnetic and mesonic field
 More theoretical input is needed to understand the data

P_q: quark polarization

Nature 548, 62 (2017) (STAR Collaboration) Phys Rev C 98, 14910 (2018) (STAR Collaboration) arXiv: 1909.01281 (2019) (ALICE Collaboration) arXiv: 1910.14408 (2019) (ALICE Collaboration)

- We presented p_T and centrality dependence of ρ_{00} of neutral K* from 54.4 GeV and 200 GeV.
- $K^{*0} \rho_{00} < 1/3$ is observed for both 54.4 and 200 GeV
- Observation of K^{*0} spin alignment at RHIC energies
- p_T and centrality dependence of ρ_{00} similar between RHIC and LHC

- For midcentral collisions, ρ_{00} (K^{*0}) < 1/3, while ρ_{00} (ϕ) > 1/3
- Need quantitative estimation from models to better understand the data

Summary

Theoretical expectation of poo

Vorticity	$\rho_{00}(\omega) < 1/3$	
Magnetic field	$\rho_{00}(B) > 1/3$	Electrica vector m
	$\rho_{00}(B) < 1/3$	Electrica vector m
Hadronization	$\rho_{00}(\text{rec}) < 1/3$	Recomb
	$\rho_{00}({\rm frag})>1/3$	Fragmer
Mesonic field	$\rho_{00}(\phi)>1/3$	For φ m

For Au+Au 200 GeV data:

- STAR has collected more than 2 B events during 2014, 2016 and 2018. We expect to reach better statistical precision
- Analysis of charged K^{*} ρ₀₀ with high statistics 200 GeV data is underway

For lower energy Au+Au data (< 39 GeV):

 High statistics and detector upgrades in 2nd phase of BES will improve precision of vector meson ρ_{00} measurements

Outlook

11.5

14.5

19.6

27

200

320

580

500

Thank you

Subhash Singha, QM 2019

Backup slides

Subhash Singha, QM 2019

Invariant mass signal reconstruction

- K*⁰ signal is extracted by using rotational background subtraction method Signal fitted with Breit Wigner function plus second order polynomial as residual
- background
- K^{*0} mass and width consistent with published values
- K^{*0} yield is the area under the Breit Wigner function

Invariant mass signal reconstruction

Au+Au 200 GeV, centrality: 40-50%, p_T: 1.2-1.8 GeV/c, cos θ*: 1/7- 2/7

- φ signal is extracted by using mixed event background subtraction method
- background
- Φ yield is the area under Breit Wigner function

Signal fitted with Breit Wigner function plus first order polynomial as residual

Event plane reconstruction

Event plane from TPC:

Phys. Rev. C 58 (1998) 1671

$$\Psi_2 = \frac{1}{2} \frac{\sum w_i \sin(n\phi_i)}{\sum w_i \cos(n\phi_i)}$$

• Second order event plane (ψ_2) is measured using TPC

Subhash Singha, QM 2019

Analysis method

K^{*0} efficiency x acceptance (ε_{rec}) from embedding data

- GeV
- ρ_{00} results in peripheral collisions consistent with 1/3
- ρ_{00} results from 3D random plane consistent with 1/3

K^{*0} ρ₀₀ (centrality)

Deviation of ρ_{00} from 1/3 is observed for mid-central collisions for both 54.4 and 200

- No beam energy dependence observed in ρ₀₀ with current precision
- beam energies

STAF

• High statistics data from STAR BES-II can improve precision in ρ_{00} measurements in lower

Results shown at QM 2018

transverse momentum dependence of ρ_{00} for K^{*0} and ϕ

• ρ_{00} (ϕ) > 1/3 for $\sqrt{s_{NN}}$ =39 and 200 GeV with >~ 3 σ significance

• ρ_{00} (K^{*0}) < 1/3 for $\sqrt{s_{NN}}$ = 11.5 - 39 GeV within ~ 1-2 σ significance

High statistics data in 54.4 and 200 GeV allow precision measurement for centrality and

K*⁰ ρ₀₀ (centrality): RHIC vs. LHC

In ALICE Preliminary results, EP resolution correction with "1/R" term as a correction

K^{*0} : comparison with published results

200 GeV)	Published(Run-04)	Preliminary(Run-
statistics	20 M	370 M
PID	TPC only (poor S/B ratio)	TPC+TOF
solution ection	$\frac{1}{R}$	$\rho_{00} - \frac{1}{3} = \frac{4}{1+3R} \left(\rho_{00}^{\text{obs}} - \frac{1}{1+3R} \right)$
Phys	Rev C. 77 (2008) 61902 (STAR	A Tang et al Phys Rev C 98

Phys. Rev. C 77 (2008) 61902 (STAR Collaboration)

A. Tang et. al., Phys. Rev. C 98 (2018)

 K^{*0} results are consistent with published results within 1-1.5σ considering systematic uncertainties

