

Differential measurements of Λ polarization in $A u+A u$ collisions and a search for the magnetic field by STAR

Wednesday, 6 November 2019 14:00 (20 minutes)

Abstract

Lambda polarization $P_{\Lambda / \bar{\Lambda}}$ was measured by the STAR collaboration [1], confirming the existence of extremely large vorticities within the Quark-Gluon Plasma (QGP). A recent study using a high-statistics data set at $\sqrt{s_{N N}}=200 \mathrm{GeV}$ has shown the dependence of $P_{\Lambda / \bar{\Lambda}}$ on collision centrality, azimuthal angle (φ), transverse momentum $\left(p_{T}\right)$, pseudorapidity (η), etcetera [2][3]. Additionally suggested in [1] is an enhanced $P_{\bar{\Lambda}}$ relative to P_{Λ} across all beam energies; however, the statistics are too limited to make a significant measurement. No such splitting is observed in the high-statistics $\sqrt{s_{N N}}=200 \mathrm{GeV}$ data set, but this splitting is expected to increase at lower beam energies. The splitting in polarization would be consistent with the effects of hyperon magnetic-moment coupling with the magnetic field sustained in the QGP; it would have far-reaching consequences important to magnetic-field-dependent observables such as the chiral magnetic effect and would set the scale on the conductivity of the QGP. Recently, STAR has taken high-statistics data sets at $\sqrt{s_{N N}}=27$ and 54.4 GeV . The 27 GeV data set is considered suitable to study the splitting between P_{Λ} and $P_{\bar{\Lambda}}$ since it includes the recently installed EventPlane Detector (EPD), which significantly increases the event-plane resolution. Both data sets are used to study the splitting between P_{Λ} and $P_{\bar{\Lambda}}$ as well as the various differential measurements of $P_{\Lambda / \bar{\Lambda}}$. Implications of these measurements will also be discussed. [1] The STAR Collaboration, Global Λ hyperon polarization in nuclear collisions, Nature 548 (2017) 62. [2] The STAR Collaboration, Global polarization of Lambda hyperons in $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{s_{N N}}=200$ GeV, Phys. Rev. C 98 (2018) 14910. [3] The STAR Collaboration, Polarization of $\Lambda(\bar{\Lambda})$ hyperons along the beam direction in $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{s_{N N}}=200 \mathrm{GeV}$, arXiv:1905.11917.

Primary author: ADAMS FOR THE STAR COLLABORATION, Joseph (Ohio State University)
Presenter: ADAMS FOR THE STAR COLLABORATION, Joseph (Ohio State University)
Session Classification: Parallel Session - Chirality III

Track Classification: Chirality, vorticity and spin polarization

