Search for the chiral magnetic effect with the ALICE experiment

Sizar Aziz¹ on behalf of the ALICE collaboration

Institut de Physique Nucleaire d'Orsay¹

Quark Matter 2019, 4-11 Nov 2019 - Wuhan, China

- Charge separation with respect to reaction plane
- ► Two necessary conditions
 - Configuration with non-zero chirality
 Caused by topologically non-trivial gluonic fields in QCD vacuum
 - Strong magnetic field
 Caused by spectator protons in collisions
 - CME depends on both strength and lifetime of magnetic field

- Charge separation with respect to reaction plane
- ► Two necessary conditions
 - Configuration with non-zero chirality
 Caused by topologically non-trivial gluonic fields in QCD vacuum
 - Strong magnetic field
 Caused by spectator protons in collisions
 - ► CME depends on both strength and lifetime of magnetic field

- Charge separation with respect to reaction plane
- Two necessary conditions
 - Configuration with non-zero chirality
 Caused by topologically non-trivial gluonic fields in QCD vacuum
 - Strong magnetic field Caused by spectator protons in collisions
 - CME depends on both strength and lifetime of magnetic field

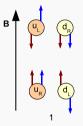


Figure: Red arrows correspond to momentum, blue arrows to spin. Plot taken from Kharzeev et al (Nucl.Phys.A803:227-253,2008)

- ▶ (1) In strong magnetic fields, spin is (anti) aligned for (negative) positive particles
- (2) Interaction with (right-handed) chiral medium will flip chirality.
 - ▶ Spin flipping energetically suppressed in strong magnetic fields, so momentum flips instead!
- ▶ (3) Charge separation with respect to magnetic field has occurred

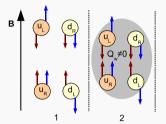


Figure: Red arrows correspond to momentum, blue arrows to spin. Plot taken from Kharzeev et al (Nucl.Phys.A803:227-253,2008)

- ▶ (1) In strong magnetic fields, spin is (anti) aligned for (negative) positive particles
- ▶ (2) Interaction with (right-handed) chiral medium will flip chirality.
 - ▶ Spin flipping energetically suppressed in strong magnetic fields, so momentum flips instead!
- ▶ (3) Charge separation with respect to magnetic field has occurred

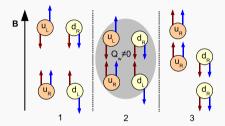
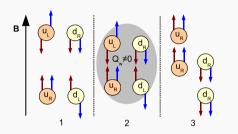


Figure: Red arrows correspond to momentum, blue arrows to spin. Plot taken from Kharzeev et al (Nucl.Phys.A803:227-253,2008)

- ▶ (1) In strong magnetic fields, spin is (anti) aligned for (negative) positive particles
- ▶ (2) Interaction with (right-handed) chiral medium will flip chirality.
 - ▶ Spin flipping energetically suppressed in strong magnetic fields, so momentum flips instead!
- ▶ (3) Charge separation with respect to magnetic field has occurred



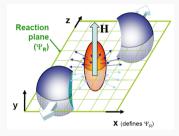
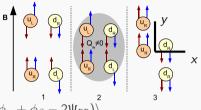
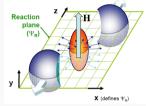


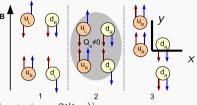
Figure: Red arrows correspond to momentum, blue arrows to spin. Plot taken from Kharzeev et al (Nucl.Phys.A803:227-253,2008)

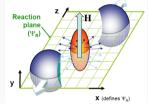
- ▶ (1) In strong magnetic fields, spin is (anti) aligned for (negative) positive particles
- ▶ (2) Interaction with (right-handed) chiral medium will flip chirality.
 - ▶ Spin flipping energetically suppressed in strong magnetic fields, so momentum flips instead!
- ▶ (3) Charge separation with respect to magnetic field has occurred



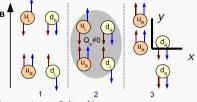


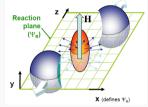
- Simplified example (plot above)
 - ► Coordinate system aligned with Ψ_{RP} so $\Psi_{RP} = 0!$
 - ightharpoonup OS pairs: $\phi_{lpha}=rac{1}{2}\pi$ and $\phi_{eta}=-rac{1}{2}\pi$, making $\gamma_{11}=1$
 - SS pairs: $\phi_{\alpha} = \phi_{\beta} = \frac{1}{2}\pi \ (-\frac{1}{2}\pi)$ for positive (negative) pairs. In both cases, $\gamma_{11} = -1$.
- ► Key point: difference in correlator value depending on same sign (SS) or opposite sign (OS) pairs!
 - ▶ Difference quantified by $\Delta \gamma_{1,1} = \gamma_{1,1}(OS) \gamma_{1,1}(SS)$
 - ho $\Delta \gamma_{1,1}$ does not contain charge independent Ψ_2 independent background thanks to OS SS subtraction





- Simplified example (plot above)
 - ▶ Coordinate system aligned with Ψ_{RP} so $\Psi_{RP} = 0!$
 - ightharpoonup OS pairs: $\phi_{lpha}=rac{1}{2}\pi$ and $\phi_{eta}=-rac{1}{2}\pi$, making $\gamma_{11}=1$
 - SS pairs: $\phi_{\alpha} = \bar{\phi}_{\beta} = \frac{1}{2}\pi \left(-\frac{1}{2}\pi\right)$ for positive (negative) pairs. In both cases, $\gamma_{11} = -1$.
- Key point: difference in correlator value depending on same sign (SS) or opposite sign (OS) pairs!
 - ▶ Difference quantified by $\Delta \gamma_{1,1} = \gamma_{1,1}(OS) \gamma_{1,1}(SS)$
 - ho $\Delta \gamma_{1,1}$ does not contain charge independent Ψ_2 independent background thanks to OS SS subtraction





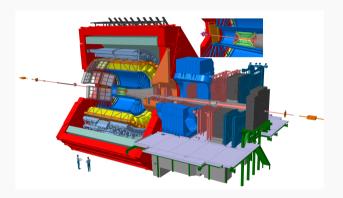
- Simplified example (plot above)
 - ▶ Coordinate system aligned with Ψ_{RP} so $\Psi_{RP} = 0!$
 - ightharpoonup OS pairs: $\phi_{\alpha}=\frac{1}{2}\pi$ and $\phi_{\beta}=-\frac{1}{2}\pi$, making $\gamma_{11}=1$
 - SS pairs: $\phi_{\alpha} = \bar{\phi}_{\beta} = \frac{1}{2}\pi \left(-\frac{1}{2}\pi\right)$ for positive (negative) pairs. In both cases, $\gamma_{11} = -1$.
- Key point: difference in correlator value depending on same sign (SS) or opposite sign (OS) pairs!
 - ▶ Difference quantified by $\Delta \gamma_{1,1} = \gamma_{1,1}(OS) \gamma_{1,1}(SS)$
 - $ightharpoonup \Delta \gamma_{1,1}$ does not contain charge independent Ψ_2 independent background thanks to OS SS subtraction

- lacktriangle Ψ_{RP} is not experimentally accessible, but can be approximated by event plane Ψ_2
 - ► Correlator must be subsequently corrected for event plane resolution!
- In addition, there are also 2 particle correlators without reference to any symmetry plane according to $\delta_m = \langle \cos(m[\phi_\alpha \phi_\beta]) \rangle$
 - ► Contain contributions from correlations unrelated to azimuthal asymmetry
 - ightharpoonup As for $\gamma_{1,1}$, calculate δ_1 for OS and SS pairs
- ► Correlators are averaged over all tracks per event, over all events

- lacktriangle Ψ_{RP} is not experimentally accessible, but can be approximated by event plane Ψ_2
 - Correlator must be subsequently corrected for event plane resolution!
- In addition, there are also 2 particle correlators without reference to any symmetry plane according to $\delta_m = \langle \cos(m[\phi_\alpha \phi_\beta]) \rangle$
 - Contain contributions from correlations unrelated to azimuthal asymmetry
 - As for $\gamma_{1,1}$, calculate δ_1 for OS and SS pairs
- ► Correlators are averaged over all tracks per event, over all events

- \blacktriangleright Ψ_{RP} is not experimentally accessible, but can be approximated by event plane Ψ_2
 - Correlator must be subsequently corrected for event plane resolution!
- In addition, there are also 2 particle correlators without reference to any symmetry plane according to $\delta_m = \langle \cos(m[\phi_\alpha \phi_\beta]) \rangle$
 - Contain contributions from correlations unrelated to azimuthal asymmetry
 - As for $\gamma_{1,1}$, calculate δ_1 for OS and SS pairs
- ► Correlators are averaged over all tracks per event, over all events

ALICE



- ► ITS used for vertex determination and tracking
- ► TPC used for tracking and event plane determination
- ▶ V0 for triggering, centrality determination and event plane determination

Analysis

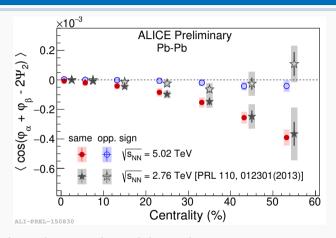
- ► Two analyses: 5.02 TeV Pb-Pb collisions and 5.44 TeV Xe-Xe collisions (new for QM2019)
- ► In both cases event cuts used were
 - ► MB events in 0-90% centrality
 - Centrality determined with V0 (forward rapidity) detectors
- ► Primary tracks subject to criteria
 - $ightharpoonup 0.2 < p_T < 5.0 \text{ GeV}/c$
 - $|\eta| < 0.8$

Analysis

- ► Two analyses: 5.02 TeV Pb-Pb collisions and 5.44 TeV Xe-Xe collisions (new for QM2019)
- In both cases event cuts used were
 - ► MB events in 0-90% centrality
 - Centrality determined with V0 (forward rapidity) detectors
- Primary tracks subject to criteria
 - $ightharpoonup 0.2 < p_T < 5.0 \text{ GeV}/c$
 - $|\eta| < 0.8$

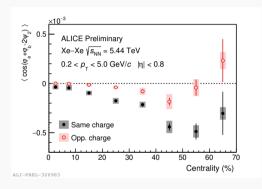
Analysis

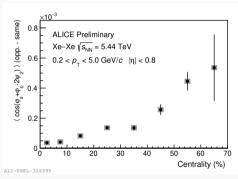
- ► Two analyses: 5.02 TeV Pb—Pb collisions and 5.44 TeV Xe—Xe collisions (new for QM2019)
- ► In both cases event cuts used were
 - ► MB events in 0-90% centrality
 - Centrality determined with V0 (forward rapidity) detectors
- Primary tracks subject to criteria
 - $ightharpoonup 0.2 < p_T < 5.0 \text{ GeV}/c$
 - ▶ $|\eta| < 0.8$



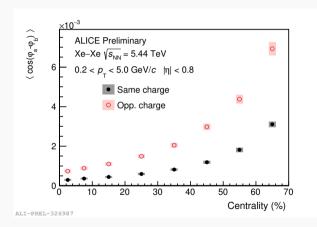
- ▶ 2015 Pb—Pb data taking sample much larger than 2010 one
- Opposite sign close to 0, while same sign is negative
 - Clear signs of charge dependence

Results $\gamma_{1,1}$ in Xe–Xe (new)

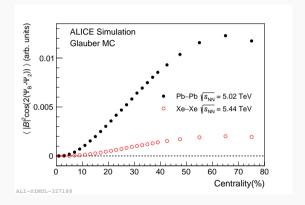




- Charge dependence that increases for peripheral events
 - Similar behaviour as in Pb-Ph collisions.
- ▶ More peripheral events means more spectator protons, so stronger B field
 - ► In line with expectation of CME-like signal



- lacksquare δ_1 has significant charge dependence that increases towards peripheral collisions
 - ▶ Indication of a large background presence in $\gamma_{1,1}$



- ▶ B field in Pb–Pb collisions is much stronger than in Xe–Xe
 - ▶ If significant CME contribution, $\Delta \gamma_{1,1}$ should be larger

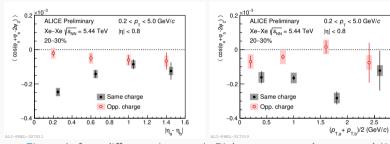
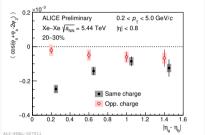


Figure: Left: η difference $|\eta_{\alpha} - \eta_{\beta}|$. Right: p_{T} average $(p_{T,\alpha} + p_{T,\beta})/2$

- ▶ Differential $\gamma_{1,1}$ results in centrality bin of 20-30%
 - ▶ Probe if there is a kinematic region with strong contribution to signal
- **b** Both for η difference and p_T average same behavior
 - ► Weak/no dependence for opposite sign pairs
 - Stronger dependence for same sign pairs



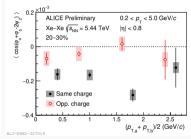
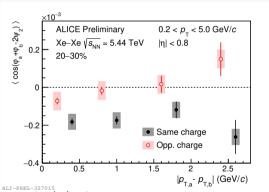


Figure: Left: η difference $|\eta_{\alpha} - \eta_{\beta}|$. Right: p_{T} average $(p_{T,\alpha} + p_{T,\beta})/2$

- ▶ Differential $\gamma_{1,1}$ results in centrality bin of 20-30%
 - ▶ Probe if there is a kinematic region with strong contribution to signal
- lacktriangle Both for η difference and $m{p}_{\mathrm{T}}$ average same behavior
 - ► Weak/no dependence for opposite sign pairs
 - ► Stronger dependence for same sign pairs



- ► For $p_{\rm T}$ difference, opposite behavior
 - Strong dependence for opposite sign pairs
 - ► Same sign pairs

- > $\gamma_{1,1}$ has been measured at 5.02 TeV Pb–Pb collisions and 5.44 TeV Xe–Xe collisons as well as δ_1 in Xe–Xe
- ightharpoonup Additionally, differential $\gamma_{1,1}$ shown for Xe–Xe collisions
 - Opposite sign pairs show weak dependence on η difference and p_T average
 - ► Same sign pairs show stronger dependence
 - For p_T difference, opposite behavior is seen
- ► In both collision systems
 - ightharpoonup similar charge dependence seen for $\gamma_{1,1}$
 - $ightharpoonup \delta_1$ in Xe–Xe found to have strong charge dependence
 - Indication that non CME contribution to $\gamma_{1,1}$ are significant
- lacktriangle Need to constrain background contributions from CME contributions to $\gamma_{1,1}$

- > $\gamma_{1,1}$ has been measured at 5.02 TeV Pb–Pb collisions and 5.44 TeV Xe–Xe collisons as well as δ_1 in Xe–Xe
- lacktriangle Additionally, differential $\gamma_{1,1}$ shown for Xe–Xe collisions
 - lacktriangle Opposite sign pairs show weak dependence on η difference and $p_{
 m T}$ average
 - Same sign pairs show stronger dependence
 - For p_T difference, opposite behavior is seen
- ► In both collision systems
 - ightharpoonup similar charge dependence seen for $\gamma_{1,1}$
 - $ightharpoonup \delta_1$ in Xe–Xe found to have strong charge dependence
 - Indication that non CME contribution to $\gamma_{1,1}$ are significant
- \blacktriangleright Need to constrain background contributions from CME contributions to $\gamma_{1,1}$

- > $\gamma_{1,1}$ has been measured at 5.02 TeV Pb–Pb collisions and 5.44 TeV Xe–Xe collisons as well as δ_1 in Xe–Xe
- lacktriangle Additionally, differential $\gamma_{1,1}$ shown for Xe–Xe collisions
 - lacktriangle Opposite sign pairs show weak dependence on η difference and $p_{
 m T}$ average
 - Same sign pairs show stronger dependence
 - For p_T difference, opposite behavior is seen
- ► In both collision systems
 - ightharpoonup similar charge dependence seen for $\gamma_{1,1}$
 - lacksquare δ_1 in Xe–Xe found to have strong charge dependence
 - ▶ Indication that non CME contribution to $\gamma_{1,1}$ are significant
- lacktriangle Need to constrain background contributions from CME contributions to $\gamma_{1,1}$

- > $\gamma_{1,1}$ has been measured at 5.02 TeV Pb–Pb collisions and 5.44 TeV Xe–Xe collisons as well as δ_1 in Xe–Xe
- lacktriangle Additionally, differential $\gamma_{1,1}$ shown for Xe–Xe collisions
 - lacktriangle Opposite sign pairs show weak dependence on η difference and $p_{
 m T}$ average
 - Same sign pairs show stronger dependence
 - For p_T difference, opposite behavior is seen
- ► In both collision systems
 - ightharpoonup similar charge dependence seen for $\gamma_{1,1}$
 - lacktriangle δ_1 in Xe–Xe found to have strong charge dependence
 - ▶ Indication that non CME contribution to $\gamma_{1,1}$ are significant
- lacktriangle Need to constrain background contributions from CME contributions to $\gamma_{1,1}$

Outlook

- Upper limits on CME contribution already studied
 - ► Another ALICE analysis using event shape engineering found an upper limit of 26-33% at 95% confidence level
 - In a CMS study, an upper limit of 7% at 95% confidence level was found (Phys. Rev. C 97, 044912 (2018))
- ► New methods are in development
- ► For more information, posters by
 - ► Andrea Danu

 Measurements of charge-dependent correlations in Xe—Xe collisions with ALICE
 - Anjali Sharma Event-by-Event measurement of charge separation in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV in ALICE

Outlook

- Upper limits on CME contribution already studied
 - ► Another ALICE analysis using event shape engineering found an upper limit of 26-33% at 95% confidence level
 - In a CMS study, an upper limit of 7% at 95% confidence level was found (Phys. Rev. C 97, 044912 (2018))
- New methods are in development
- ► For more information, posters by
 - ► Andrea Danu

 Measurements of charge-dependent correlations in Xe—Xe collisions with ALICE
 - Anjali Sharma Event-by-Event measurement of charge separation in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV in ALICE

Outlook

- Upper limits on CME contribution already studied
 - ► Another ALICE analysis using event shape engineering found an upper limit of 26-33% at 95% confidence level
 - ► In a CMS study, an upper limit of 7% at 95% confidence level was found (Phys. Rev. C 97, 044912 (2018))
- ► New methods are in development
- ► For more information, posters by
 - Andrea Danu
 Measurements of charge-dependent correlations in Xe—Xe collisions with ALICE
 - Anjali Sharma Event-by-Event measurement of charge separation in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV in ALICE

Backup

B field determination

- ► MC Glauber simulations tuned to ALICE data
- Centrality determined using simulated V0M multiplicity
- ▶ B field determined with eq. A.6 from Kharzeev et al (Nucl.Phys.A803:227-253,2008)

$$\bullet \ \ e \mathsf{B}_{\mathsf{s}}^{\pm}(\tau,\eta,\mathsf{x}_{\perp}) = \pm Z \alpha_{\mathsf{EM}} \sinh \big(\mathsf{Y}_{\mathsf{0}} \mp \eta \big) \int \mathsf{d}^{2} \mathsf{x}_{\perp}' \rho_{\pm}(\mathsf{x}_{\perp}') [1 - \theta_{\mp}(\mathsf{x}_{\perp}')] \times \frac{(\mathsf{x}_{\perp}' - \mathsf{x}_{\perp}) \times e_{z}}{[(\mathsf{x}_{\perp}' - \mathsf{x}_{\perp})^{2} + \tau^{2} \sinh(\mathsf{Y}_{\mathsf{0}} \mp \eta)^{2}]^{3/2}}$$