Measurement of jet structure and substructure in heavy ion collisions with ATLAS

Martin Rybar
for the ATLAS collaboration

Quark Matter 2019 November 6, 2019
Jet splitting and parton shower in QGP

- How is the parton shower modified in the deconfined medium?
 - Is the fragmentation process modified?
 - What is the role of jet momentum?
 - Can we see medium response to the fast partons?
 - Previous jet measurements suggest transfer energy out-of the jet cone.

- How does jets with multi-pronged structure loose energy?
 - Can we see color coherence/decoherence effects?
 - It may help to disentangle the contributions of path length and fluctuations to the quenching.
Jet fragmentation

- Measurement of fragmentation functions and their ratios:

\[D(p_T) \equiv \frac{1}{N_{\text{jet}}} \frac{dN_{\text{ch}}}{dp_T} \quad D(z) \equiv \frac{1}{N_{\text{jet}}} \frac{dN_{\text{ch}}}{dz} \]

\[z \equiv p_T \cos \Delta R / p_T^{\text{jet}} \]

- Fully corrected for detector effects.

\[R_{D(z)} \equiv \frac{D(z)_{\text{PbPb}}}{D(z)_{pp}} \]

Shower in medium

Shower in vacuum
Jet p_T dependence to the FF modification

No dependence on jet p_T observed at high z for jets up to 400 GeV.

Enhancement of soft fragments increases for high p_T jets.
Expanding the measurement to large angles

\[D(p_T, r) = \frac{1}{N_{\text{jet}}} \frac{1}{2\pi r} \frac{\text{d}^2 n_{\text{ch}}(r)}{\text{d}r \text{d}p_T} \]

where \(r < 0.8 \) with respect to jet axis

- Ratios and differences are evaluated:
 \[R_D(p_T, r) = \frac{D(p_T, r)_{\text{Pb+Pb}}}{D(p_T, r)_{\text{pp}}} \]
 \[\Delta D(p_T, r) = D(p_T, r)_{\text{Pb+Pb}} - D(p_T, r)_{\text{pp}} \]

- Measurement corrected for UE contributions and for track and jet momentum and angular resolutions.
Radial profile

- Sharp fall-off with r with increasing track p_T.
- Change of shapes in central Pb+Pb collisions compared to pp reference.
Jets are broader in more central collisions at low p_T.

Significant suppression of yields of particles $p_T > 4$ GeV outside the jet core.
Smallest modification seen in the jet core.

The enhancement increases with decreasing p_T.

The suppression decreases with increasing p_T.

Minimal modification for particles with p_T of ~4 GeV.
Absolute size of modifications

The largest excess in terms of number of extra particles is in the cone!
- Up to ~5 extra particles per unit area per GeV.

\[\Delta D(p_T, r) = D(p_T, r)_{\text{Pb+Pb}} - D(p_T, r)_{\text{pp}} \]
Integrals of $D(p_T, r)$ distributions

\[\Theta(r) = \int_{1 \text{ GeV}}^{4 \text{ GeV}} D(p_T, r) dp_T \]

\[\Delta\Theta(r) = \Theta(r)_{\text{Pb+Pb}} - \Theta(r)_{pp} \]
Integrals of $D(p_T, r)$ distributions

$$\Theta(r) = \int_1^{4 \text{ GeV}} D(p_T, r) dp_T$$

$$\Delta\Theta(r) = \Theta(r)_{\text{Pb+Pb}} - \Theta(r)_{pp}$$

- Significant jet p_T dependence to the enhancement is observed
 - Consistent with inclusive jet fragmentation measurement.
Expanding the measurement to large angles

- Does the jet suppression depend on jet structure?
- Can be addressed by measurement of jet R_{AA} as a function of their sub-structure using sub-jets.

Reclustered large-R jets

- Cal. towers & UE subtraction
- $R=0.2$ jets $p_T > 35$ GeV
- re-clustering with anti-k_t $R=1.0$
- Splitting scale $\sqrt{d_{12}}$
- re-clustering with k_t algorithm
- Sub-jets

Different jets than the conventional $R=1.0$.
Trimming & 35 GeV threshold remove all the soft component.

"Conventional" jet
Re-clustered jet
Observables and analysis procedure

- Measurement of yields of re-clustered $R=1.0$ jets as function of p_T and and k_t splitting scale:
 $$\sqrt{d_{12}} = \min(p_{T1}, p_{T2}) \times \Delta R_{12}$$

- Jet suppression is evaluated using nuclear modification factor R_{AA}

- Yields are corrected for detector effects using 2D Bayesian unfolding.
 - Corrects also for presence of the combinatorial contribution.

ATLAS Preliminary

Pb+Pb 1.72 nb$^{-1}$, pp 257 pb$^{-1}$

$\sqrt{s_{NN}} = 5.02$ TeV

$|y|<2.0$, $200 < p_{t} < 251$ GeV

Reclustered $R = 1.0$ jets

Raw sub-jet multiplicity
Observables and analysis procedure

- Measurement of yields of re-clustered $R=1.0$ jets as function of p_T and k_t

$$\sqrt{d_{12}} = \min(p_{T1}, p_{T2}) \times \Delta R_{12}$$

- Jet suppression is evaluated using nuclear modification factor R_{AA}

- Yields are corrected for detector effects using 2D Bayesian unfolding.
 - Corrects also for presence of the combinatorial contribution.

Single sub-jet: $\sqrt{d_{12}} = 0$
Clear centrality dependence of the yields and suppression with respect to pp cross-section.
Suppression by factor of 2 in the most central collisions.
Small but continuous increase of the R_{AA} with p_T.
R_{AA} of Inclusive yields

- Qualitatively similar to suppression of conventional $R=0.4$ jets but a larger suppression.
- Models predict a smaller suppression for larger R jets.
- Re-clustering remove the energy radiated between $R=0.2$ sub-jets.
The lowest $\sqrt{d_{12}}$ interval populated by jets with single “isolated” sub-jet.

Yields suppressed in more central collisions with respect to pp collisions.
Significant change of the R_{AA} magnitude between jets with single sub-jet and and those with more complex substructure.

The R_{AA} sharply decreases with increasing $\sqrt{d_{12}}$ followed by flattening.
A continuous increase of the suppression with increasing centrality.

The jets with single sub-jet are less suppressed with respect to those with higher sub-jet multiplicity.

In agreement with previous measurements if suppression of nearby jets.
Jet p_T dependence

- $R=1.0$ with a single “isolated” sub-jet shows similar trends as inclusive measurement but smaller suppression.
Less p_T dependence seen for R_{AA} for re-clustered jets with a complex substructure.

Both spectra shapes and quenching affects the R_{AA}.
Conclusions

- Suppression of higher p_T particles outside the jet core.
- The largest excess in terms of number of extra particles is in the cone.

- Measurement of re-clustered $R=1.0$ jets shows significant variation of R_{AA} with the p_T scale of the hardest splitting.
- Significance difference in quenching or jets with multi-prong structure compared to those with single sub-jet.

ATLAS HI Public results:
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HeavyIonsPublicResults
Jet response depends on parton flavour.
Steeper FF when approaching the $z \sim 1$.
Worsening of track momentum resolution at high p_T.
Difference in the jet energy resolution in pp and Pb+Pb at lower p_T.

Difference in response for quark and gluon jets:

$arXiv:1406.0076$
Aspects of measurement @ high-p_T

- Jet response depends on parton flavour.
- Steeper FF when approaching the $z \sim 1$.
- Worsening of track momentum resolution at high p_T.
- Difference in the jet energy resolution in pp and Pb+Pb at lower p_T.

Need for 2D unfolding

Impact of the unfolding

The $D(p_T, r)$ are further corrected for position resolution by bin-by-bin correction.
No modification of parton shower is observed in p+Pb system.
UE in FF measurement

ATLAS
Pb+Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$, 0.49 nb$^{-1}$, 0-10%
anti-k_T, $R=0.4$ jets, $126 < p_T^{ch} < 158 \text{ GeV}$

ATLAS
Pb+Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$, 0.49 nb$^{-1}$, 30-40%
anti-k_T, $R=0.4$ jets, $126 < p_T^{ch} < 158 \text{ GeV}$

ATLAS
Pb+Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$, 0.49 nb$^{-1}$, 60-80%
anti-k_T, $R=0.4$ jets, $126 < p_T^{ch} < 158 \text{ GeV}$

arXiv:1805.05424
Tracking efficiency

ATLAS Simulation

$pp \quad \sqrt{s} = 5.02 \text{ TeV}$

$|y^{\text{jet}}| < 0.3$

anti-$k_{\perp}, R=0.4$

Tracking efficiency

ATLAS Simulation

$Pb+Pb \quad \sqrt{s_{NN}} = 5.02 \text{ TeV}$

$|y^{\text{jet}}| < 0.3$

anti-$k_{\perp}, R=0.4$

- 0-10%, $126 \text{ GeV} < p_{T}^{\text{jet}} < 158 \text{ GeV}$
- 0-10%, $251 \text{ GeV} < p_{T}^{\text{jet}} < 316 \text{ GeV}$
- 60-80%, $126 \text{ GeV} < p_{T}^{\text{jet}} < 158 \text{ GeV}$
- 60-80%, $251 \text{ GeV} < p_{T}^{\text{jet}} < 316 \text{ GeV}$
Modification of jet fragmentation in Pb+Pb

Increasing modification to FF with increasing centrality.
Enhancements of yields of hard and soft fragments.
Hybrid model (arXiv:1707.05245) consistent at high z, disagreement at low z due to simplistic medium response modeling.

EQ model is able to describe the high-z excess.

SCETg model is able to qualitatively described the low-z excess.
Integrals of $D(p_T)$ distributions

Jet p_T dependence to the enhancement.

$N_{ch} = \int_{p_T,\text{min}}^{p_T,\text{max}} \left(D(p_T)_{\text{cent}} - D(p_T)_{\text{pp}} \right) dp_T$.}

arXiv:1805.05424
Rapidity dependence

Measured as ratio of $R_{D(z)}$ in different jet y bins to the $R_{D(z)}$ in $|y|<0.3$.

Still statistically limited.

No significant rapidity dependence to the modification.

Sign of depletion at high z.

arXiv:1805.05424
Both models are able to describe the rapidity dependence in data.

Comparison to EQ and Hybrid model.
Is there dependence on collision energy?

- Comparison to the result at 2.76 TeV.

No dependence on the collision energy. Similar to other jet observables.
Jet p_T dependence of $R_{D(p_T,r)}$

Similar observation as for r-inclusive measurement:

Yield of soft fragments more enhanced for higher p_T jets.

No significant dependence of yields for fragments with intermediate p_T.

ATLAS

Pb+Pb $\sqrt{s}_{NN} = 5.02$ TeV, 0.49 nb$^{-1}$

pp $\sqrt{s} = 5.02$ TeV, 25 pb$^{-1}$

anti-k_t, $R=0.4$

$1.6 < p_{T,1} < 2.5$ GeV

$6.3 < p_{T,2} < 10.0$ GeV
Modification of Radial Profile

Jets are broader in more central collisions at low p_T.
Significant suppression of yields of particles >4 GeV outside the jet core.

Continuous modifications with centrality:
Increase of yields of soft fragments with r.
Decrease of yields of higher-p_T particles with r.
Integrals of $D(p_T, r)$ distributions

Integrated “jet shape”

$$P(r) = \int_{0}^{r} \int_{1 \text{ GeV}}^{4 \text{ GeV}} D(p_T, r') dp_T dr'$$

$$R_P(r) = \frac{P(r)_{Pb+Pb}}{P(r)_{pp}}$$

- Linear increase of the excess with r towards $r = 0.5$ with flattening at larger radial distances.
- Significant jet p_T dependence to the enhancement is observed.
Integrals of $D(p_T, r)$ distributions

ATLAS

\[
\Delta \Theta(r) = \Theta(r)_{\text{Pb+Pb}} - \Theta(r)_{pp}
\]

Significant jet p_T dependence to the enhancement is observed

Consistent with inclusive jet fragmentation measurement.

\[
\Theta(r) = \int_{1 \text{ GeV}}^{4 \text{ GeV}} D(p_T, r) dp_T
\]

\[
\Delta \Theta(r) = \Theta(r)_{\text{Pb+Pb}} - \Theta(r)_{pp}
\]
Yields of Re-clustered jets vs splitting scale

Significant change of the R_{AA} magnitude between jets with single sub-jet and those with more complex substructure.

The R_{AA} sharply decreases with increasing $\sqrt{s_{NN}}$, followed by flattening.

Consistent with previous ATLAS result reporting suppression to conditional yields of nearby jets.
Integrals of $D(p_T)$ distributions

Jet p_T dependence to the enhancement.

Response of the medium to the high-p_T parton?

\[
P_T^{ch} \equiv \int_{p_T, min}^{p_T, max} \left(D(p_T)_{\text{cent}} - D(p_T)_{pp} \right) p_T \, dp_T
\]