Modification of jet substructure in heavy ion collisions as a probe of the resolution length of quark-gluon plasma

Daniel Pablos

in collaboration with J. Casalderrey, G. Milhano & K. Rajagopal

Quark Matter 2019 Wuhan

6th November 2019

arXiv:1907.11248

Many new jet substructure measurements:

differential

mass

groomed

Chance to explore underlying physical mechanisms with detail:

- phase space effects
- medium response

QGP resolution length

Motivation

The hybrid strong/weak coupling model

Interaction of partons with QGP of T~ Λ_{QCD} is strongly coupled;

Energy and momentum deposited in the QGP hydrodynamize quickly;

Daniel Pablos

The hybrid strong/weak coupling model

Evolution of high virtuality energetic jets dominated by DGLAP evolution;

- Parton shower generated with PYTHIA8.
- Formation time argument for space-time picture.

Interaction of partons with QGP of T~ Λ_{QCD} is strongly coupled;

Energy loss rate from holography:

$$\frac{1}{E_{\rm in}}\frac{dE}{dx} = -\frac{4}{\pi}\frac{x^2}{x_{\rm stop}^2}\frac{1}{\sqrt{x_{\rm stop}^2}}$$

Energy and momentum deposited in the QGP hydrodynamize quickly;

$$E\frac{d\Delta N}{d^3p} = \frac{1}{32\pi} \frac{m_T}{T^5} \cosh(y - y_j) \exp\left[-\frac{m_T}{T} \cosh(y - y_j)\right] \left\{ p_T \Delta P_T \cos(\phi - \phi_j) + \frac{1}{3}m_T \Delta M_T \cosh(y - \phi_j) \right\}$$

Daniel Pablos

- - Chesler & Rajagopal -PRD '14, JHEP '16

$$x_{
m stop} = rac{1}{2\kappa_{
m sc}} rac{E_{
m in}^{1/3}}{T^{4/3}}$$

 $\mathcal{O}(1)$ free parameter

- Compute modified hadron spectrum from perturbed freeze-out hyper-surface:

University of Bergen

 $-x^{2}$

The QGP Resolution Length

QGP resolution length:

minimal distance between two coloured charges such that they engage with the plasma independently.

Daniel Pablos

The medium perceives a parton shower as a collection of effective probes.

The QGP Resolution Length

QGP resolution length:

minimal distance between two coloured charges such that they engage with the plasma independently.

At weak coupling:

connection between resolution length and energy loss.

J. Casalderrey et al. - 1210.7765

Daniel Pablos

The medium perceives a parton shower as a collection of effective probes.

At strong coupling: no such connection (yet).

In the hybrid model:

resolution length proportional to the Debye screening length of QGP.

 $L_{\rm res}\sim\lambda_{\rm D}$

Hulcher et al. - JHEP '18

Two extreme scenarios

7

Look for sensitivity of observables to $L_{ m res}$:

Take two extreme values for $L_{\rm res}$

(explore realistic values later on)

Daniel Pablos

- $L_{\rm res} = 0$ fully resolved case
- $L_{\rm res} = \infty$ fully unresolved case

University of Bergen

)

Two extreme scenarios

Look for sensitivity of observables to $L_{\rm res}$:

Take two extreme values for $L_{\rm res}$

(explore realistic values later on)

Daniel Pablos

- fully resolved case • $L_{\rm res} = 0$
- fully unresolved case • $L_{\rm res} = \infty$

Amount of *jet* quenching depends on L_{res}

Adjust value of κ_{sc} to compare results at the same value of jet RAA

 $L_{\rm res}=0$ (global fit) $L_{\rm res} = \infty$ (adjusted) $0.5 < \kappa_{\rm sc} < 0.52$ $0.404 < \kappa_{\rm sc} < 0.423$

Relative suppression of hadrons vs jets strongly depends on QGP resolution length.

1000

(see

A frustrating observable: charged jet mass

Daniel Pablos

Without wake:

 $L_{\rm res} = 0$ shift towards smaller masses

 $L_{\rm res} = \infty$ barely any modification

> Larger mass jets are more active; more suppressed if substructure resolved.

A frustrating observable: charged jet mass

10

Daniel Pablos

With wake:

Soft particles from the wake increase the mass, compensating quenching.

 $L_{\rm res}=0$ and $L_{\rm res}=\infty$ barely distinguishable!

Surprisingly good description of data across three p_T ranges, after cancellation of effects...

Soft Drop (SD) procedure in a nutshell:

- **1.** Reconstruct jet with anti- k_{T} .
- 2. Recluster jet with Cambridge-Aachen.
- **3.** Go back clustering history, store z and ΔR of each pair of branches.

Soft Drop

Soft Drop (SD) procedure in a nutshell:

- **1.** Reconstruct jet with anti- k_{T} .
- 2. Recluster jet with Cambridge-Aachen.
- **3.** Go back clustering history, store z and ΔR of each pair of branches.

If stop at first step that satisfies SD condition: 1st SD "splitting"

- study such 1st "splitting"
- study groomed jet properties

Soft Drop condition:

Soft Drop

12

Larkoski et al. - JHEP '14, PRD '15

Soft Drop (SD) procedure in a nutshell:

- **1.** Reconstruct jet with anti- k_{T} .
- **2.** Recluster jet with Cambridge-Aachen.
- **3.** Go back clustering history, store z and ΔR of each pair of branches.

If stop at first step that satisfies SD condition: 1st SD "splitting"

- study such 1st "splitting"
- study groomed jet properties

If count all "splittings" that satisfy SD condition: (following the hardest branch, i.e. Iterative SD)

SD "splittings", **n**_{SD}

Daniel Pablos

Soft Drop

Remove soft & soft-collinear

 $L_{\rm res} = 0$ reduction of n_{SD}

Wake negligible.

 $L_{\rm res} = \infty$

barely any modification

Jets with higher multiplicity are more suppressed, ensemble biased towards less active ones if substructure is resolved

(also a subleading effect from "per jet" energy loss, see back-up)

Daniel Pablos

SD Splittings

1 st SD splitting z_g vs ΔR

normalised to N_{jets}

(not Sudakov safe, but results unchanged for $\beta = -\epsilon$)

Daniel Pablos

Strong ordering in ΔR (if parton shower resolved). Larger ΔR ; Larger phase-space for emissions; Larger quenching, smaller survival rate; (almost NO effect from "per jet"

1 st SD splitting z_g vs ΔR

normalised to N_{jets}

- (not Sudakov safe, but results) unchanged for $\beta = -\epsilon$)
- Wake almost no effect.
- Negligible modification z_q shape.

Daniel Pablos

Strong ordering in ΔR (if parton shower resolved). Larger ΔR ; Larger phase-space for emissions; Larger quenching, smaller survival rate; (almost NO effect from "per jet" energy loss, see back-up)

(small incoherent energy loss effect visible at partonic level, see back-up)

University of Bergen

16

1 st SD splitting z_g vs ΔR

normalised to N_{jets}

- (not Sudakov safe, but results) unchanged for $\beta = -\epsilon$)
- Wake almost no effect.
- Negligible modification z_q shape.

Daniel Pablos

Strong ordering in ΔR (if parton shower resolved). Larger ΔR ; Larger phase-space for emissions; Larger quenching, smaller survival rate; (almost NO effect from "per jet" energy loss, see back-up)

(small incoherent energy loss effect visible at partonic level, see back-up)

1st SD splitting Lund Plane

If shower resolved *increased* weight of jets with smaller (groomed) mass.

White curves: lines of constant $\log(1/($

Daniel Pablos

$$(M_g/p_{T,g}))$$
 , where $M_g/p_{T,g}$

$$\frac{M_g^2}{p_{T,g}^2} \simeq z_g (1 - z_g) \Delta R^2$$

Difference PbPb-pp of 1st SD splitting Lund plane

Flat

Removes soft & soft-collinear

Core

Removes soft-wide

Soft-core

Extends soft-collinear region

CMS angularity limit: $\Delta R > 0.1$

Daniel Pablos

Cutting the Lund Plane

19

Difference PbPb-pp of 1st SD splitting Lund plane

Removes soft & soft-collinear

Removes soft-wide

Soft-core

Extends soft-collinear region

Enhances Lund plane structure above $\Delta R > 0.1$

CMS angularity limit: $\Delta R > 0.1$

University of Bergen

Daniel Pablos

Cutting the Lund Plane

20

Groomed jet mass

21

Daniel Pablos

Not self-normalized:

merely reflect absence of wide angle configurations

Self-normalized:

differences due to $L_{\rm res}$ of the size of the wake effect

Soft-core

Strong discriminating power, not relying on the norm.

Comparison with (not unfolded) data

Low z_g enhancement arises in our model from smearing effects.

Strong ordering in ΔR is robust under smearing effects.

Daniel Pablos

 z_g distribution, differential in ΔR , successfully described by the Hybrid Model.

 $L_{\rm res} = \infty$ is disfavoured by data.

Comparison with (not unfolded) data

23

Daniel Pablos

Sensitivity to Lres

24

	$\Delta R > 0.0$	$\Delta R \ < 0.1$	$\Delta R > 0.2$
PYTHIA	0.9729(2)	0.5757(7)	0.1730(4)
$L_{ m res}=0$	0.9599(8)	0.710(4)	0.092(2)
$L_{\rm res} = 2/\pi T$	0.9633(8)	0.660(3)	0.115(2)
$L_{ m res}=\infty$	0.969(1)	0.603(3)	0.161(2)

Daniel Pablos

Conclusions

Studied the sensitivity of jet substructure observables to the value of the QGP resolution length: Ungroomed observables too sensitive to soft particles from the wake (charged jet mass). Groomed observables have a strong discriminating power: good taggers for the total amount of jet activity, which regulates quenching. The smaller L_{res} , the larger the bias towards narrow configurations. Different grooming setups give access to different phase space regions; proposed soft-core grooming to maximise discriminating power for groomed mass. Comparison between smeared theory & not unfolded data disfavours unresolved scenario. Hybrid model describes very well the z_g distribution, differential in ΔR . Questions power of observable to identify medium induced radiation or hard recoils.

Daniel Pablos

Correlation between n_{SD} and ΔR

26

Daniel Pablos

Correlation between nsp and zg

Daniel Pablos

A careful look into the selection bias

Restricted pp: sample of pp jets from which the "surviving" sample of PbPb jets come from

Bias: Increase # of one-pronged jets E. loss: Incoherent energy loss shift of z_g (see Mehtar-Tani & Tywoniuk - JHEP '17)

The role of formation time

Daniel Pablos

Is wide configuration suppressed because formed early?

Radical test:

Assume all formation times are zero.

Small adjustment of kappa.

Almost no change in ΔR ordering.

Observable dominated by correlation between ΔR and multiplicity.

Wider jets lose more energy

Effect seen in the literature, for different models, on different observables

Daniel Pablos

Wider, more active jets lose more energy than narrower, hard fragmenting ones

Initial jet ensemble binned in energy and width

Even though each individual jet widens, final distribution is narrower

Wider jets lose more energy

 $\Delta p_\perp/p_\perp^{(\mathrm{in})}$

Wider, more active jets lose more energy than narrower, hard fragmenting ones Effect seen in the literature, for different models, on different observables

Holographic "jets"

Hybrid Model

Dijet asymmetry dominated by mass to momentum ratio, proxy for *#* vacuum splittings

Wider jets lose more energy

Effect seen in the literature, for different models, on different observables

Daniel Pablos

Wider, more active jets lose more energy than narrower, hard fragmenting ones

Larger R jets more quenched due to more energy loss sources

