Mapping the redistribution of jet energy in PbPb collisions using jets with various radius parameters with CMS

Molly Taylor Massachusetts Institute of Technology for the CMS Collaboration

Quark Matter 2019, Wuhan, China

November 6, 2019

Introduction

ATLAS 5.02 TeV, R = 0.4

CMS 2.76 TeV R Scan

Partons lose energy in QGP = **jet quenching** Jet quenching seen in R_{AA} modifications $R_{AA}(p_T) = \frac{\text{PbPb jet yield}}{\text{scaled pp jet yield}}$

Past Results

However, ATLAS R_{CP} (central to peripheral ratio) shows significant dependence on R

Theory Predictions: Jet *R_{AA}*

MARTINI: Phys. Rev.	Li and Vitev: JHEP 1907 (2019) 148	SCET _G w/o coll. E-loss:	Pyquen: <u>Eur. Phys. J C16 (2000) 527-536</u> & <u>Eur. Phys.</u>	BDMPS: Phys. Rev. D 98
<u>C 80 (2019) 054913</u>	& <u>Phys. Lett. B 795 (2019) 502-510</u>	JHEP05 (2016) 023	J C46 (2006) 211-217 & SINP MSU 2004-14/753	<u>(2018) no.5, 051501</u>

Theory Predictions: Jet $R_{AA}^R/R_{AA}^{0.2}$

Effects as R increases:

- Energy more spread out
- Jet splitting emerging
- Gluon radiation and medium response recovered
- Quark vs. gluon contributions change

Quark Matter 2019

 $R_{AA}^{R}/R_{AA}^{0.2}$ ratio will increase if PbPb recovers energy faster than pp with increasing R

Analysis Strategy

- 1. Reconstruct jets from particle-flow candidates with anti- k_t algorithm using R = 0.2, 0.3, 0.4, 0.6, 0.8, 1.0
- 2. Subtract underlying event using constituent subtraction and flow modulation

- 3. Apply jet energy correction
- 4. Unfold raw data with d'Agostini's algorithm to account for detector effects

Graphic credit: Chris McGinn

Background Subtraction

Use constituent subtraction with flow-modulated ρ to account for

underlying event fluctuations from elliptic and triangular flow (v_2 and v_3):

 $\rho(\eta, \phi) = \rho(\eta) \times (1 + 2\nu_2 \cos(2[\phi - \Phi_{EP,2}]) + 2\nu_3 \cos(3[\phi - \Phi_{EP,3}]))$

JHEP06 (2014) 092

Phys. Lett. B 753 (2016) 424

Jet Scale and Resolution

- Flow modulation reduces jet energy resolution ~10-20%
- Evidence of over-subtraction for large R at low p_T since amount subtracted scales with area
- Jets can bias the flow modulation fit leading to additional nonclosure

$$\mu = \left\langle p_T^{reconstructed} / p_R^{truth} \right\rangle$$
$$\sigma = \sigma \left(p_T^{reconstructed} / p_R^{truth} \right)$$

- Past results showed R_{AA} has a weak p_T dependence
- ⇒ Don't expect much modification in spectra shape, mostly in yield
- Production for R = 1 is increased as expected since more energy is included in the jet cone

Results: Jet *R*_{*AA*}

$$R_{AA}(p_T) = \frac{\text{PbPb jet yield}}{\text{scaled pp jet yield}}$$

- Systematic uncertainties partially cancel
- Central collisions show strong suppression for all R
- Most peripheral collisions consistent with unity
- Hints of increasing R_{AA} with p_T

ATLAS Jet R_{AA} Comparisons

~1.5 σ deviation in central collisions

Good agreement for all other centrality classes

Phys. Rev. B 790 (2019) 108

Results: Jet $R_{AA}^R/R_{AA}^{R=0.2}$

- Double ratio allows further cancellation of systematics
- Increases if PbPb recovers energy faster than pp with increasing R
- Central collisions show light recovery at high p_T

Quark Matter 2019

Peripheral collisions
consistent with unity

Theory Comparison: Event Generators

Jewel: JHEP 1707 (2017) 141

Pyquen: <u>Eur. Phys. J C16</u> (2000) 527-536 & <u>Eur. Phys. J</u> <u>C46 (2006) 211-217 & SINP</u> MSU 2004-14/753

Jewel:

- Scattering and radiative energy loss for hard partons
- Recoiling medium that carries energy away
- Overestimates R dependence

Pyquen:

- Superposition of soft hydro state and hard jets
- Rescattering and radiation for hard partons
- Decent description of R dependence

Theory Comparison: Monte Carlo

CCNU coupled jet-fluid: <u>Phys. Rev. C 94</u> (2016) no.2, 024902, <u>Phys.Rev. C 95</u> (2017) no.4, 044909, & arXiv:1906.09562 MARTINI: <u>Phys. Rev. C 80 (2019) 054913</u> Hybrid: <u>arXiv:1907.12301</u> & <u>JHEP03</u> (2017) 135 LBT: <u>Phys. Rev. C 99 (2019) 054911</u>

wake \Rightarrow full medium response pos wake \Rightarrow only pos. contribution no wake \Rightarrow no medium response

MARTINI:

- Hydrodynamic model
- Jets propagate in evolving med. •
- Overestimates R dependence

LBT:

- Hydrodynamic medium
- pQCD jets and med. recoil
- Overestimates R dependence •

Hybrid:

- Soft contribution + pert. jets
- Wake = full medium response
- Overestimates suppression

CCNU coupled jet-fluid

- Collisions, splitting, p_T broad.
- Viscous hydro medium
- Sensitive to med. response

Theory Comparison: Calculations

Factorization: Phys. Lett. 122 (2019) 252301

Li and Vitev: <u>JHEP 1907</u> (2019) 148 & <u>Phys. Lett. B 795 (2019)</u> <u>502-510</u>

SCET_G w/o coll. E-loss: JHEP05 (2016) 023

Coherent antenna BDMPS: <u>Phys.</u> <u>Rev. D 98 (2018) no.5, 051501</u>

Factorization:

- Factorization of jet cross sections •
- Jet func. extracted from small R
- Underestimates R dependence

SCET_G w/o coll. energy loss: Li and

- $\ensuremath{\mathsf{SCET}}_{G}$ models interaction of hard partons with soft gluons
- Great agreement with data

Li and Vitev:

- Use SCET_G framework
- Coll. energy loss & CNM
- Great agreement with data

Coherent Antenna BDMPS:

- Quenching & Sudakov factors
- [•] Suppresses large angle fluct.
 - Slightly underestimates R dep.

Conclusions

- Measured nuclear modification factor R_{AA} for jets with R = 0.2, 0.3, 0.4, 0.6, 0.8, 1.0 based on pp and PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV
- Strong suppression of high p_T jets for all R
- Central collisions: observed recovery of energy faster than the pp reference
- Peripheral collisions: observed no apparent R dependence & little quenching

Measurements sensitive to jet quenching mechanism, medium response, wide angle radiations

Acknowledgements: The MIT group's work was supported by US DOE-NP.

Backup

17

Object Selections

- Jet-triggered events with $p_T > 80$ GeV in pp (27.4 pb⁻¹) and PbPb (404 µb⁻¹) collisions at $\sqrt{s_{NN}} = 5.02$ TeV
 - Selected high p_T jets (p_T > 200 GeV) with $|\eta|$ < 2
 - To remove non-collision events require vertex |z| < 15 cm, 3 HF towers > 3 GeV, cluster shape compatibility
- Categorize by event centrality = degree of overlap of lead ions
 - \rightarrow 0% centrality corresponds to head-on collision
 - Centrality determined by the sum of transverse energy from HF calorimeter towers
 - Used centrality intervals 0–10%, 10–30%, 30–50%, and 50–90%
- Triggering is fully efficient in both pp and PbPb collisions for this selection

Background Subtraction

Need to remove the soft underlying event (UE)

Use constituent subtraction (CS) with estimated UE density ρ

- Add ghosts particles on η - ϕ grid according to $p_T^{ghost} = A_{ghost} \cdot \rho$, $m_{\delta}^{ghost} = A_{ghost} \cdot \rho_m$ where A_{ghost} is the area of the ghost
- Choose ghosts and real particles to combine in order of decreasing

$$\Delta R_{i,k} = p_{Ti}^{\alpha} \cdot \sqrt{\left(y_i - y_k^{ghost}\right)^2 + \left(\varphi_i - \varphi_k^{ghost}\right)^2}$$

- Where ghost p_T exceeds real p_T , remove the real particle and reduce ghost p_T by real (and vice versa)
- Continue until all ghosts are gone

JHEP06 (2014) 092

Background Subtraction

Use constituent subtraction (CS) with **flow-modulated** ρ to account for UE variations from triangular and elliptic flow (v_2 and v_3):

- (1) $N(\phi) = N_0(1 + 2\nu_2 \cos(2[\phi \Phi_{EP,2}]) + 2\nu_3 \cos(3[\phi \Phi_{EP,3}]))$
- (2) $\rho(\eta,\phi) = \rho(\eta) \times (1 + 2\nu_2 \cos(2[\phi \Phi_{EP,2}]) + 2\nu_3 \cos(3[\phi \Phi_{EP,3}]))$
- **Step 1:** Find event plane angles for v_2 and v_3 : $\Phi_{EP,2}$ and $\Phi_{EP,3}$ using HF calorimeters (3 < $|\eta|$ < 5)
- **Step 2:** Fit PF candidates with $0.3 < p_T$ < 3.0 GeV and $|\eta| < 1$ using Eqn. 1 to get N_0 , v_2 , and $v_3 \Rightarrow \rho(\eta, \phi)$ (Eqn. 2)

Discard if bad fit or insufficient statistics $\Rightarrow \rho(\eta, \phi)$ estimated to be flat

Quark Matter 2019

Phys. Lett. B 753

2016) 424

Response Matrices

Шii

Systematics

- Jet energy scale (JES) uncertainty ranges from 15-20%
 - Nonclosure from simulation
 - Data/simulation differences
 - UE difference between data/simulation (cancels in R_{AA} ratios but not R_{AA})
- Jet energy resolution (JER)
 - Uncertainty from simulation (does not cancel in R_{AA})
 - Data/simulation differences (partial cancellation in R_{AA})
- Fake jets contamination evaluated from simulation (negligible)
- Unfolding uncertainty is 5-10%
 - Choice of prior
 - Unfolding algorithm: Bayesian vs SVD

- Luminosity / T_{AA}
 - pp integrated luminosity uncertainty is 2.3%
 - T_{AA} relative uncertainty is 3-11% from central to peripheral

ATLAS Jet R_{AA} Comparisons

Phys. Rev. B 790 (2019) 108

Quark Matter 2019

ATLAS Jet R_{AA} Comparisons

Phys. Rev. B 790 (2019) 108

Results: Spectra Ratio

Шii

