

Heavy Flavour Jets and Correlations

Jakub Kvapil

University of Birmingham, UK

on behalf of the ALICE collaboration

Quark Matter 2019, Wuhan

6/11/2019 Quark Matter, Wuhan

J. Kvapil, Heavy Flavour Jets and Correlations

Physics motivation

- HF mesons
 - Heavy quarks (b,c) are mostly produced in hard scatterings at the initial stage of the collision
 - measurement down to $p_{\rm T,D} \approx 0$
 - Production cross section can be calculated within pQCD

Physics motivation

- HF mesons
 - Heavy quarks (b,c) are mostly produced in hard scatterings at the initial stage of the collision
 - measurement down to $p_{\mathrm{T,D}} pprox \mathbf{0}$
 - Production cross section can be calculated within pQCD
- HF-tagged jets
 - Measurement of jets from hard scattering down to very low p_{T,jet}
 - which helps in constraining the jet background (even in large systems)
 - Experimental input for gluon-to-hadron Fragmentation Function (g $\rightarrow D^0$) and gluon PDF at low x
 - Quark-enhanced jet sample (w.r.t inclusive jets ⇐ gluon-induced showers)

Physics motivation

- HF mesons
 - Heavy quarks (b,c) are mostly produced in hard scatterings at the initial stage of the collision
 - measurement down to $p_{\mathrm{T,D}} pprox \mathbf{0}$
 - Production cross section can be calculated within pQCD
- HF-tagged jets
 - Measurement of jets from hard scattering down to very low p_{T,jet}
 - which helps in constraining the jet background (even in large systems)
 - Experimental input for gluon-to-hadron Fragmentation Function (g \rightarrow $D^{0})$ and gluon PDF at low x
 - Quark-enhanced jet sample (w.r.t inclusive jets ⇐ gluon-induced showers)
- **pp:** pQCD test
- pA: Cold-Nuclear-Matter effects
- AA: Probe of Quark-Gluon Plasma
 - Flavour and mass dependence of jet quenching
 - Redistribution of the lost energy
 - Collisional energy loss might be important! (JHEP 1907 (2019) 148)
 - Measurement of radiative energy loss at low $p_{\rm T,iet}$
 - dead cone effect
 - Modification of the fragmentation and HF jet structure in the medium
 - Additional information, complementary to $R_{
 m AA}$ and v_2

300

Anti- $k_T |\eta| < 2 R=0.3$

250

g=2.0

200

150

b-jet p_T (GeV)

50

100

Tue. 9:20

Talk By N. Zardoshti

The ALICE DETECTOR

Λ_c^+/D^0 -tagged charged jets

- Λ_c^+/D^0 -tagged charged jet reconstruction:
 - Λ_c^+/D^0 daughters in event replaced with Λ_c^+/D^0 candidate
 - One Λ_c^+/D^0 baryon/meson is replaced at one time
 - All charged tracks are clustered into jets -> every $\Lambda_c^+/{\rm D^0}$ meson is in a jet
 - $D^0 \to K^- \pi^+$ + conj. (B.R. 3.89%)
 - $\Lambda_c^+ \rightarrow pK_S^0$ + conj. (B.R. 1.59%)
- Invariant mass analysis to extract $\Lambda_c^+/{\rm D}^0$ -jet raw spectrum
 - Side band method for background subtraction
 - Correction on $\Lambda_c^+/\mathsf{D}^{\scriptscriptstyle 0}$ -jet efficiency and beauty feed down
 - 2D unfolding (z_{\parallel}^{ch} , $p_{\mathrm{T,jet}}$) for detector effects
 - Anti- k_{T} , charged jets with R=0.4 (R=0.6)

D⁰-tagged jets: cross-section

POWHEG HVQ CT10NLO + PYTHIA6

Data above central POWHEG value

POWHEG Dijet CT10NLO + PYTHIA6

- Data below central POWHEG value
- Consistent trend between energies
 - Note: 5.02 TeV ($p_{T,D^0} > 3 \text{ GeV}/c, R = 0.3$) 7 TeV ($p_{T,D^0} > 3 \text{ GeV}/c, R = 0.4$) 13 TeV ($p_{T.D^0} > 2 \text{ GeV}/c, R = 0.4$)
 - Decreasing minimum $p_{T.D^0}$ increased • difference from the central POWHEG
- Consistent with theory comparison

J. Kvapil, Heavy Flavour Jets and Correlations

data / theory

(GeV/c)⁻

qш

$\Lambda_{\rm C}^+ - \text{tagged jets: } z_{\parallel}^{ch} \text{ probability density } z_{\parallel}^{ch} = \frac{\overline{p_{\Lambda_{\rm c}^+}} \cdot \overline{p_{\rm ch\,jet}}}{\overline{p_{\rm ch\,jet}} \cdot \overline{p_{\rm ch\,jet}}}$

- Λ_{c}^{+} -tagged jets z_{\parallel}^{ch} probability density at **<u>13 TeV</u>**
 - *R*=0.4
 - First measurement of Λ_c^+ in jets at LHC
 - Measurement with large uncertainties.
 - Exciting prospects for high luminosity LHC run!
- Comparison to model
 - POWHEG hvq CT10NLO + PYTHIA6
 - Softer fragmentation in data
 - Seems to favor PYTHIA with softer settings
 - Allow to put constrains on models

 $p_{\mathrm{T,jet}} \in (7-15)~\mathrm{GeV}/c$ $p_{\Lambda_{\mathrm{c}}^+} \in (3-15)~\mathrm{GeV}/c$

b-tagged jets: Methods overview

• Selection strategy:

- Most displaced Secondary Vertex (SV) •
 - 3 prongs, p-Pb 2016 data at 5.02 TeV
 - 3 prongs, **p-rb** 2010 and 1 1. Displacement significance: $SL_{xy} = \frac{L_{xy}}{\sigma_{L_{xy}}}$

2. Dispersion of SV:
$$\sigma_{SV} = \sqrt{\sum_i (d_{0,i})^2}$$

ALICE Preliminary

Primary vertex

Secondary vertex

(c²/GeV)

Probability density

Ē

data / I

Raw

b-tagged jets: Methods overview

Selection strategy:

- Most displaced Secondary Vertex (SV)
 - 3 prongs, p-Pb 2016 data at 5.02 TeV
 - 1. Displacement significance: $SL_{xy} = \frac{L_{xy}}{\sigma_{L_{xy}}}$
 - 2. Dispersion of SV: $\sigma_{SV} = \sqrt{\sum_{i} (d_{0,i})^2}$
- Track counting algorithm (IP)
 - It uses the large Impact Parameter (IP) of the b-hadrons, pp 2016 data at 5.02 TeV
 - 1. Evaluate a discriminator $sd_{xy} = sign(\overrightarrow{d_{xy}} \cdot \overrightarrow{p_{iet}})d_{xy}$
 - 2. Sort the sd_{xy} of the tracks inside the jet in descending order.
 - 3. A jet is tagged as a b-jet if the Nth most displaced track with IP larger than a threshold parameter $d_{xy}^{threshold}$

J. Kvapil, Heavy Flavour Jets and Correlations

• <u>Selection strategy:</u>

- Most displaced Secondary Vertex (SV)
 - 3 prongs, p-Pb 2016 data at 5.02 TeV
 - 1. Displacement significance: $SL_{xy} = \frac{L_{xy}}{\sigma_{L_{xy}}}$
 - 2. Dispersion of SV: $\sigma_{SV} = \sqrt{\sum_{i} (d_{0,i})^2}$
- Track counting algorithm (IP)
 - It uses the large Impact Parameter (IP) of the bhadrons, pp 2016 data at 5.02 TeV
 - 1. Evaluate a discriminator $sd_{xy} = sign(\overrightarrow{d_{xy}} \cdot \overrightarrow{p_{jet}})d_{xy}$

b-tagged jets: Methods overview

- 2. Sort the sd_{xy} of the tracks inside the jet in descending order.
- 3. A jet is tagged as a b-jet if the Nth most displaced track with IP larger than a threshold parameter $d_{xy}^{threshold}$

Correction strategy

- Secondary Vertex
 - Tagging efficiency is determined from PYTHIA+EPOS
 - Tagging purity based on a data-driven method and POWHEG
- Impact Parameter
 - data-driven methods for both efficiency and purity

b-tagged jets: cross-section and R_{pPb}

- Consistent with theory prediction
 - POWHEG HVQ EPS09NLO + PYTHIA6 (SV)
 - POWHEG HVQ CT14NLO + PYTHIA8 (IP)

pp hvq

b-tagged jets: cross-section and R_{pPb}

- Consistent with theory prediction
 - POWHEG HVQ EPS09NLO + PYTHIA6 (SV)
 - POWHEG HVQ CT14NLO + PYTHIA8 (IP)
 - POWHEG Dijet EPPS16 + PYTHIA8 (CT14NLO for IP)

b-tagged jets: cross-section and R_{pPb}

- Consistent with theory prediction
 - POWHEG HVQ EPS09NLO + PYTHIA6 (SV)
 - POWHEG HVQ CT14NLO + PYTHIA8 (IP)
 - POWHEG Dijet EPPS16 + PYTHIA8 (CT14NLO for IP)
- b-jet production is not affected by coldnuclear-matter effect within the current uncertainties

6/11/2019 Quark Matter, Wuhan

J. Kvapil, Heavy Flavour Jets and Correlations

HFe-jets: Final state effects?

- Observed positive v₂ of heavy flavours (leptonic channel) in p-Pb collisions at 5.02 TeV
 - Indicate final-state effects in small system?
 - in case of final-state effects we could also see a suppression of jet spectra
 - Jets with different R (jet cone size) is sensitive to modification of jet shape – broadening
- Measured jets containing electrons from heavy-flavour hadron decays (HFe-jets) with various jet resolution parameters

HFe-jets: Final state effects?

- Observed positive v₂ of heavy flavours (leptonic channel) in p-Pb collisions at 5.02 TeV
 - Indicate final-state effects in small system?
 - in case of final-state effects we could also see a suppression of jet spectra
 - Jets with different R (jet cone size) is sensitive to modification of jet shape – broadening
- Measured jets containing electrons from heavy-flavour hadron decays (HFe-jets) with various jet resolution parameters
- 1. R dependence of $R_{\rm pPb}$
 - No modification of $p_{T,jet}$ spectrum of HFe-jet in p-Pb

 $p_{\mathrm{T,ch\,jet}}^{50}(\mathrm{GeV}/c)^{6}$

ALI-PREL-322365

J. Kvapil, Heavy Flavour Jets and Correlations

HFe-jets: Final state effects?

- Observed positive v₂ of heavy flavours (leptonic channel) in p-Pb collisions at 5.02 TeV
 - Indicate final-state effects in small system?
 - in case of final-state effects we could also see a suppression of jet spectra
 - Jets with different R (jet cone size) is sensitive to modification of jet shape – broadening
- Measured jets containing electrons from heavy-flavour hadron decays (HFe-jets) with various jet resolution parameters
- 1. R dependence of $R_{\rm pPb}$
 - No modification of $p_{T,jet}$ spectrum of HFe-jet in p-Pb
- 2. $\sigma(R = 0.3)/\sigma(R = 0.6)$ in pp and p-Pb
 - No modification of jet shape of heavy-flavour jets
- we observe that there is no modification of the jet spectra in small system
 - System not large enough where parton lose energy in p-Pb collisions?

ALT-PREL-322384

Poster: S. Sakai

Physics motivation: D-h correlation

- Correlation of "trigger" D mesons with "associated" charged particles
 - alternate and complementary approach to study D-tagged jets

Physics motivation: D-h correlation

- Correlation of "trigger" D mesons with "associated" charged particles
 - alternate and complementary approach to study D-tagged jets
- highly sensitive to the charm production mechanism
 - At leading order (LO)
 - The quark pair is produced **back-to-back** in azimuthal angle
 - The near-side peak $(\Delta \phi, \Delta \eta) = (0,0)$ is containing the D-meson trigger and the other particles produced from the fragmentation of its parent c or \overline{c} quark
 - The away-side peak $\Delta \phi = \pi$ is obtained from the particles contained in the recoiling jet.

ALI-PREL-307329

Physics motivation: D-h correlation

- Correlation of "trigger" D mesons with "associated" charged particles
 - alternate and complementary approach to study D-tagged jets
- highly sensitive to the charm production mechanism
 - At leading order (LO)
 - The quark pair is produced **back-to-back** in azimuthal angle
 - The near-side peak $(\Delta \phi, \Delta \eta) = (0,0)$ is containing the D-meson trigger and the other particles produced from the fragmentation of its parent c or \overline{c} quark
 - The away-side peak $\Delta \phi = \pi$ is obtained from the particles contained in the recoiling jet.
 - At next-to-leading order (NLO) the correlation pattern can be modified by:
 - The "gluon splitting" (broader and higher near-side peak)
 - The radiation of a hard gluon (broadening of near- and away-side)
 - Flavour excitation (flatter contribution than LO in $\Delta \phi$)
 - Gluon recoil (small bump in away-side)

D-h correlation: Analysis overview

6/11/2019 Quark Matter, Wuhan

D-h correlation: Analysis overview

- D-h correlation in pp at 5.02 TeV
- 1. reconstruction and selection of D mesons and primary charged particles
 - $D^0 \rightarrow K^-\pi^+$ + conj.
 - $D^+ \rightarrow K^- \pi^+ \pi^+ + \text{conj.}$
 - $D^{*+} \to D^0 \pi^+ \to K^- \pi^+ \pi^+ + \text{conj.}$
 - Associated particles are all charged primary particles
 - Excluding D decay products
- 2. evaluation of azimuthal-correlation distribution
 - Efficiency as a function p_{T} and multiplicity

NEW paper! ArXiv:1910.14403

- Side-band method for background subtraction
- Correction on Feed-down contribution

6/11/2019 Quark Matter, Wuhan

D-h correlation: Analysis overview

- D-h correlation in pp at 5.02 TeV
- reconstruction and selection of D mesons and primary charged particles
 - $D^0 \rightarrow K^-\pi^+ + \text{conj.}$
 - $D^+ \rightarrow K^- \pi^+ \pi^+ + \text{conj.}$
 - $D^{*+} \rightarrow D^0 \pi^+ \rightarrow K^- \pi^+ \pi^+ + \text{conj.}$
 - Associated particles are all charged primary particles
 - Excluding D decay products
- evaluation of azimuthal-correlation 2. distribution
 - Efficiency as a function $p_{\rm T}$ and multiplicity
 - Side-band method for background subtraction ٠
 - Correction on Feed-down contribution
- extraction of correlation properties via fits to the average D-meson azimuthal-3. correlation distributions
 - Generalizes Gaussian (near side) + Gaussian (away side) + constant fit

NEW paper! ArXiv:1910.14403

J. Kvapil, Heavy Flavour Jets and Correlations

• HERWIG: NLO, angular ordering of parton showers, cluster hadronization model

- **POWHEG**: NLO, coupled to PYTHIA for parton showers and hadronization
- **EPOS:** string fragmentation, normally hadronized "corona" and collectively hadronized "core"
- Most of the models provide a fair description of the two correlation peaks
 - POWHEG+PYTHIA6 and PYTHIA8 provide the best description
 - the best candidates for building model references for PbPb studies
 - HERWIG misses completely the near-side peak yield at • low $p_{T,D}$ and high $p_{T,assoc}$
 - EPOS predicts too large near-side yields and qualitatively too small away-side yields •

NEW paper! ArXiv:1910.14403

10

D-meson p_{\perp} (GeV/c)

15 20 250

5 10 15 20 250

D-meson p_{\perp} (GeV/c)

5

10 15 20 250

D-meson $p_{-}(\text{GeV}/c)$

15 20

D-meson p_{\perp} (GeV/c)

5 10

 $|y_{cms}^{D}| < 0.5, |\Delta \eta| <$

 $2 < p_{-}^{assoc} < 3 \text{ GeV/c}$

D-h correlation: Comparison to models

- PYTHIA: LO, LL p_T ordering of parton showers, Lund string model for hadronization
- HERWIG: NLO, angular ordering of parton showers, cluster hadronization model
- POWHEG: NLO, coupled to PYTHIA for parton showers and hadronization
- EPOS: string fragmentation, normally hadronized "corona" and collectively hadronized "core"
- Most of the models provide a fair description of the two correlation peaks
 - POWHEG+PYTHIA6 and PYTHIA8 provide the best description
 - the best candidates for building model references for PbPb studies
 - HERWIG misses completely the near-side peak yield at low $p_{\rm T,D}$ and high $p_{\rm T,assoc}$
 - EPOS predicts too large near-side yields and qualitatively too small away-side yields

NEW paper! ArXiv:1910.14403

Conclusion

D-tagged jets

- p_{T} differential cross-section consistent with theory
- D-meson jet momentum fraction in pp shows softer fragmentation in data for low $p_{\rm T,jet}$
- Pb-Pb: analysis of the 2018 data starting now

• Λ_c^+ -tagged jets

- First measurement of Λ_c^+ in jets at LHC
- Allow to put constrains on models
- b-jets
 - First measurement in ALICE
 - Good agreement with POWHEG+PYTHIA
 - R_{pPb} indicating no cold nuclear matter effects
- HFe-jets
 - Measurement indicated no final state effects in small systems
- D-h correlation
 - Best description given by POWHEG+PYTHIA6 and PYTHIA8
 - Paper released! ArXiv:1910.14403

• Looking forward to theoretical predictions for these observables !

Thank you for your attention

backup

D⁰-tagged jets: 5.02 TeV – additional plots

D⁰-tagged jets: 13 TeV – additional plots

ALICE

6/11/2019 Quark Matter, Wuhan

D⁰-tagged jets: 5.02 TeV – R_{pPb}

b-tagged jets: Secondary Vertex

ALI-PREL-323649

 $\Lambda_{\rm c}^+$ -tagged jets

ALI-PREL-337837

ALI-PREL-337702

b-tagged jets: Impact Parameter

