

Songkyo Lee on behalf of ATLAS collaboration

Quark Matter 2019 Wuhan, China November 5th 2019

Quark Matter 2019 Songkyo Lee

Motivation

- Bottomonia are important probes of Quark-Gluon Plasma
 - Mainly produced at the early stage of the collisions
 - Negligible nonprompt fraction and less regeneration compared to charmonia
 - Three Y(nS) states are characterized by similar kinematics but have different binding energies

[Color screening]

[Regeneration]

ATLAS quarkonium results

ATLAS detector

• Bottomonia are measured via the dimuon decay channel: $Y(nS) \rightarrow \mu^{+}\mu^{-}$

Y(nS) signal extraction

ATLAS Preliminary

 $L = 1.38 \text{ nb}^{-1}$

Pb+Pb, $\sqrt{s_{NN}}$ = 5.02 TeV

10 10.5 11 11.5 12

 $m_{\rm uu}$ [GeV]

∞Υ(2S)

- p_T^{μμ} < 30 GeV
- $|y^{\mu\mu}| < 1.5$
- Centrality 0-80 %

- Signal
 - Crystal ball + Gaussian
- Background
 - $p_T < 6$ GeV: Exponential x Error func.
 - $p_T > 6$ GeV: 2nd-order polynomial

Suppression of excited states in Pb+Pb: Y(3S) is not identified

Production cross-sections

- For Pb+Pb, $\langle T_{AA} \rangle$ = nucleon-nucleon equivalent integrated luminosity per heavy-ion collisions
- Y(3S) in Pb+Pb collisions is not shown due to strong suppression

Raa vs. centrality

Nuclear modification factor

$$R_{AA} = \frac{N_{AA}}{\langle T_{AA} \rangle \times \sigma^{pp}}$$

- Y(2S+3S) is also shown to constrain Y(3S)
- Upper limit is set for the point consistent with zero
- Ordering in R_{AA}: Y(1S) > Y(2S) > Y(2S+3S)
- More suppression in more central collisions

Raa vs. pt and lyl

vs. pt

ATLAS Preliminary pp, $\sqrt{s} = 5.02 \text{ TeV}$, L = 0.26 fb⁻¹ Pb+Pb, $\sqrt{s_{NN}}$ = 5.02 TeV, L = 1.38 nb⁻¹ **→** Y(1S) lyl<1.5, 0-80 % — Y(2S) 8.0 → Y(2S+3S) □ Correlated uncer. 0.6 0.4 0.2 30 15 25 5 20 10 p_{_} [GeV]

vs. lyl

No strong p_T or lyl dependence for all Y(nS) states

Double ratios paa

$$\rho_{\mathrm{AA}}^{\Upsilon(\mathrm{nS})/\Upsilon(\mathrm{1S})} = \frac{\sigma_{\mathrm{AA}}^{\Upsilon(\mathrm{nS})}/\sigma_{\mathrm{AA}}^{\Upsilon(\mathrm{1S})}}{\sigma_{pp}^{\Upsilon(\mathrm{nS})}/\sigma_{pp}^{\Upsilon(\mathrm{1S})}} = \frac{R_{\mathrm{AA}}(\Upsilon(\mathrm{nS}))}{R_{\mathrm{AA}}(\Upsilon(\mathrm{1S}))}$$

- Luminosity and <T_{AA}> corrections are cancelled
- Acceptance and efficiency corrections are partially cancelled

vs. centrality

VS. PT

vs. lyl

Slight centrality dependence

No strong p_T or lyl dependence

Comparison to CMS: RAA

Y(1S)

Y(2S)

- For Y(1S), CMS results are slightly higher but compatible within uncertainties
- N.B. CMS: lyl<2.4, centrality = 0-100 %

ATLAS: lyl<1.5, centrality = 0-80 %

CMS: PLB 790 (2019) 270

Comparison to CMS: RAA

VS. PT

vs. lyl

- Y(1S) R_{AA} from CMS is slightly higher as observed in centrality-dependent results
- Both experiments show similar trend vs. p_T and lyl

Comparison to CMS: double ratios

vs. centrality

vs. pt

vs. lyl

- Two experiments are in good agreement
- N.B. CMS: lyl<2.4, centrality = 0-100 %

ATLAS: lyl<1.5, centrality = 0-80 %

CMS: PRL 120 (2018) 142301

Comparison to theoretical predictions

- The model includes the effect of in-medium dissociation, feed-down effects (30-40%), and uses anisotropic viscous hydrodynamic background
- No regeneration or cold nuclear matter effects
- N.B. calculation with p_T < 40 GeV, lyl < 2.4, 0-100%

 $\langle N_{part'} \rangle$

Model: Universe 2 (2016) 16

Comparison to theoretical predictions

VS. PT

vs. lyl

- The model predicts slightly increasing R_{AA} with p_T and no clear lyl dependence
- N.B. Left: calculation up to 20 GeV in lyl <2.4, Right: calculation in p_T < 40 GeV
- Need the same centrality and kinematic requirements for an apple-to-apple comparison

Charmonia vs. Bottomonia

- J/ψ R_{AA}: 9 < p_T < 40 GeV, lyl < 2
- Similar amount of suppression for Y(1S) and prompt J/ψ although Y(1S) is more tightly bound
- Hard to draw a firm conclusion due to different regenerations, feed-down effects, etc.
- Nonprompt J/ψ R_{AA} reflects b-quark energy loss

J/ψ :EPJC 78 (2018) 762

15

Double ratios: charmonia

p+Pb: EPJC 78 (2018) 171

Pb+Pb: EPJC 78 (2018) 762

- Excited state is more suppressed than the ground state even in p+Pb collisions
- Relative suppression of excited state w.r.t. ground state is more prominent in Pb+Pb collisions
- Possible enhancement of $\psi(2S)$ in central PbPb \rightarrow a sequential regeneration?

Double ratios: bottomonia

- $\rho^{(nS)/(1S)}_{pPb} > \rho^{(nS)/(1S)}_{pPbPb}$ for bottomonia as well as charmonia
- Medium effects in Pb+Pb are more sensitive to binding energies than those in p+Pb
- No increasing trend with centrality unlike charmonia results

Summary

- Production cross-sections, R_{AA}, and ρ_{AA}
 of Y(nS) mesons are measured in pp and
 Pb+Pb collisions at 5.02 TeV
- R_{AA} and ρ_{AA} decrease with increasing centrality, and show no clear dependence on p_T or |y|
- More suppression for more excited states are observed which supports a sequential melting scenario
- Results agree with previous CMS results and theoretical model predictions

ATLAS-CONF-2019-054

Backups

RpPb comparison to ALICE

EPJC 78 (2018) 171

J/ψ RAA in Pb+Pb

J/W RAA in Pb+Pb

J/ψ RAA in Pb+Pb

23

J/ψ double ratios in Pb+Pb

24

J/ψ V2 in Pb+Pb

EPJC 78 (2018) 784

J/ψ V2 in Pb+Pb

EPJC 78 (2018) 784

26

Y(nS) double ratios in p+Pb

EPJC 78 (2018) 171

Comparison to CMS: cross-sections

28

CMS: PLB 790 (2019) 270

