Azimuthal anisotropy and nuclear modification of Υ states in heavy-ion collisions with the CMS detector

JaeBeom Park, Korea University on behalf of CMS

Quark Matter 2019, Wuhan
Motivation

- **Bottomonia**: Bound states of b-quark and anti b-quark

- Broadening of spectral function with increasing T
- Sequential broadening in order of binding energy
- Peak vanish: State melted
 - $\Upsilon(1S)$ survives up to ~ 250 MeV
- Produced by hard scattering at early collision stage

[Diagram showing $\Upsilon(1S)$, $\Upsilon(2S)$, and $\Upsilon(3S)$ resonances]
• Quarkonium production in PbPb collisions at 2.76 TeV
 [JHEP 1205 (2012) 063]

• Suppression of excited $\Upsilon(nS)$ in PbPb at 2.76 TeV
 [PRL 107 (2011) 052302]

• Observation of $\Upsilon(nS)$ suppression at 2.76 TeV
 [PRL 109 (2012) 222301]

• Event activity of $\Upsilon(nS)$ in pPb at 5.02 TeV
 [JHEP 04 (2014) 103]

• Suppression of $\Upsilon(nS)$ in PbPb at 5.02 TeV
 [PLB 770, 357(2017)]

• Suppression of $\Upsilon(nS)$ in PbPb at 5.02 TeV
 [PRL 120 (2013) 142301]

• Nuclear modification of $\Upsilon(nS)$ in PbPb at 5.02 TeV
 [PLB 790 (2019) 270]

• RUN 1
PbPb: $\sqrt{s_{NN}} = 2.76$ TeV, $L = 166 \text{ nb}^{-1}$
pPb: $\sqrt{s_{NN}} = 5.02$ TeV, $L = 34.6 \text{ nb}^{-1}$
pp: $\sqrt{s_{NN}} = 5.02$ TeV, $L = 5.4 \text{ pb}^{-1}$

• RUN 2
2011-2013
PbPb: $\sqrt{s_{NN}} = 5.02$ TeV, $L = 368 \text{ pb}^{-1}$
pp: $\sqrt{s_{NN}} = 5.02$ TeV, $L = 28 \text{ pb}^{-1}$
Outline

Motivation

- $\Upsilon(nS)$ in pPb at 5 TeV
 \[R_{pPb}(p_T, y_{CM}) = \frac{(d^2\sigma/dp_Tdy_{CM})_{pPb}}{A(d^2\sigma/dp_Tdy_{CM})_{pp}} \]

- Υ elliptic flow (v_2) in PbPb at 5 TeV
 \[R_{FB}(p_T, y_{CM} > 0) = \frac{N_{pPb}(p_T, y_{CM} > 0)}{N_{pPb}(p_T, y_{CM} < 0)} \]

- Collectivity of particle production (low-p_T)
- Path length dependence energy loss (high-p_T)

Cold Nuclear Matter Effect
- nPDF modification
- Energy loss
- Comover breakup

Initial state effects

Final state effects
Outline

- **ϒ(nS) in pPb at 5 TeV** [CMS PAS HIN-18-005]
 - \(R_{pPb}(p_T, y_{CM}) = \frac{(d^2\sigma/dp_Tdy_{CM})_{pPb}}{A(d^2\sigma/dp_Tdy_{CM})_{pp}} \)
 - \(R_{FB}(p_T, y_{CM} > 0) = \frac{N_{pPb}(p_T, y_{CM} > 0)}{N_{pPb}(p_T, y_{CM} < 0)} \)

- **Cold Nuclear Matter Effect**
 - nPDF modification
 - Energy loss
 - Comover breakup

- **ϒ** elliptic flow \((v_2) \) in PbPb at 5 TeV [CMS PAS HIN-19-002]
 - Collectivity of particle production (low-\(p_T\))
 - Path length dependence energy loss (high-\(p_T\))
Y production in pPb collisions

CMS Preliminary

- Y suppressed for all states in all kinematic region
- No significant p_T dependence for all three states
- Larger suppression of $\Upsilon(3S)$ at low-p_T in the Pb-going side
Υ production in pPb collisions

- Larger suppression of $\Upsilon(3S)$ at low-p_T in the Pb-going side
- Similar behavior as prompt $\psi(2S)$
- Hint of final state effect on excited quarkonium states
Y in pPb with model comparison

- Different R_{pPb} for each state in comover model (larger size)
- Larger comover effect for higher comover densities: Pb-going direction
- Model predictions are in agreement with data within uncertainties

CMS Preliminary

- **Y(1S)**
 - $p_{T} < 30$ GeV/c
 - y_{CM}
 - R_{pPb}
 - CMS
 - Comparison with model predictions:
 - CIM + nCTEQ15
 - CIM + EPS09 LO

- **Y(2S)**
 - $p_{T} < 30$ GeV/c
 - y_{CM}
 - R_{pPb}
 - CMS
 - Comparison with model predictions:
 - CIM + nCTEQ15
 - CIM + EPS09 LO

- **Y(3S)**
 - $p_{T} < 30$ GeV/c
 - y_{CM}
 - R_{pPb}
 - CMS
 - Comparison with model predictions:
 - CIM + nCTEQ15
 - CIM + EPS09 LO
\(R_{\text{pPb}} \) comparison with other LHC results

- ALICE, ATLAS, LHCb, CMS \(R_{\text{pPb}} \) at 5.02 TeV
- Consistent results within each other

\(R_{\text{pPb}} \) comparison with other LHC results

- ATLAS, \(p+\text{Pb} \), \(\sqrt{s_{\text{NN}}} = 5.02 \) TeV
 - \(\Upsilon(1S) \), \(p_T < 40 \) GeV
 - \(\Upsilon(1S) \), \(p_T < 15 \) GeV
 - \(\Upsilon(1S) \), \(p_T > 0 \) GeV

\(\Upsilon(1S) \) results from various collaborations:
- ATLAS, CMS, LHCb, ALICE

CMS Preliminary

\(R_{\text{pPb}} \) vs. \(y_{\text{CM}} \)

- \(\Upsilon(1S) \) data
- \(\Upsilon(1S) \) comparison with models

- ATLAS, CMS preliminary
- LHCb, ALICE

- \(\Upsilon(1S) \) at 5.02 TeV
- \(p_T \) distributions

- Comover interaction
 - [PLB 740(2015) 105]
 - [EPJC 78(2018) 171]
 - [JHEP 07(2014) 94]
Υ in pPb vs PbPb

- Suppression in ordering of binding energy
 - $R_{pPb}(\Upsilon(1S)) > R_{pPb}(\Upsilon(2S)) > R_{pPb}(\Upsilon(3S))$

- Larger suppression in PbPb than in pPb
 - $R_{pPb}(\Upsilon(nS)) > R_{AA}(\Upsilon(nS))$

PbPb 368 μb$^{-1}$, pPb 34.6 nb$^{-1}$, pp 28.0 pb$^{-1}$ (5.02 TeV)

CMS Preliminary

$|y_{CM}| < 1.93$
$|y_{pPb}| < 2.4$
$p_T^\Upsilon < 30$ GeV/c

95% CL

[HIN-18-005]
[PLB 790 (2019) 270]
PbPb in 2018

New data 2018

- PbPb 2018 partial dataset at $\sqrt{s_{NN}} = 5.02$ TeV
- Trigger selections:
 - double muon inclusive
 - J/ψ region
 - Υ + high masses

PbPb : $\sqrt{s_{NN}} = 5.02$ TeV, $L \sim 1.7$ nb$^{-1}$

- Event display: Upsilon candidate

- $p_T^{\Upsilon} > 4$ GeV/c

- $\Upsilon(1,2,3S)$

- $\Upsilon > 4$ GeV/c

- CMS Preliminary

- ~4.5 more statistics compared to 2015 data

- New first-time measurement in CMS HI: Elliptic flow (v_2) of Υ
Outline

- \(\Upsilon(nS) \) in \(pPb \) at 5 TeV \(^{\text{[CMS PAS HIN-18-005]}}\)
 - \[R_{pPb}(p_T,y_{CM}) = \frac{(d^2\sigma/dp_Tdy_{CM})_{pPb}}{(d^2\sigma/dp_Tdy_{CM})_{pp}} \]
 - \[R_{FB}(p_T,y_{CM} > 0) = \frac{N_{pPb}(p_T,y_{CM} > 0)}{N_{pPb}(p_T,y_{CM} < 0)} \]

Cold Nuclear Matter Effect
- nPDF modification
- Energy loss
- Comover breakup

- \(\Upsilon \) elliptic flow \((v_2) \) in \(PbPb \) at 5 TeV \(^{\text{[CMS PAS HIN-19-002]}}\)
 - Collectivity of particle production (low-\(p_T \))
 - Path length dependence energy loss (high-\(p_T \))

Initial state effects
Final state effects

\[\bar{b} - b - \Upsilon \]
Scalar Product (SP) Method

- Large η gap applied ($|\Delta \eta|>3.0$) to remove non-flow effects
- Average denominator & numerator of $v_2\{SP\}$ over all events

\[
Q_n = \sum_j w_j e^{i\phi_j}
\]

\[
v_2\{SP\} = \frac{\langle Q_2^*Q_{2A}^* \rangle}{\sqrt{\langle Q_{2A}Q_{2B}^* \rangle \langle Q_{2A}Q_{2C}^* \rangle}}
\]
Elliptic flow (v_2) of Υ in PbPb

- Precise Υ(1S) v_2 measurement: compatible with zero in all centrality intervals
- First measurement of Υ(2S) v_2
 - provide new input to production mechanism
 - expect different regeneration than Υ(1S)

Centrality (%)

Υ(1S)

Υ(2S)

CMS Preliminary

PbPb 1.7 nb$^{-1}$ (5.02 TeV)

Υ^0 > 3.5 GeV
|y| < 2.4
p_T^Υ < 50 GeV

Centrality intervals:
- 0-10
- 10-30
- 30-50
- 50-90
- 90-100

Υ(1S) v_2 measurement compatible with zero in all centrality intervals

Υ(2S) first measurement
- Provide new input to production mechanism
- Expect different regeneration than Υ(1S)
Elliptic flow (v_2) of $\Upsilon(1S)$ in PbPb

- p_T v_2 measured with high precision
- Compatible with zero over all kinematic range
 - Max. \sim2.5 standard dev. (p_T 6–10 GeV/c)

[Figure showing elliptic flow (v_2) of $\Upsilon(1S)$ in PbPb with CMS Preliminary 1.7 nb$^{-1}$ (5.02 TeV)].
Elliptic flow (v_2) of $\Upsilon(1S)$ vs J/ψ

- **CMS**
 - Preliminary
 - PbPb 1.7 nb$^{-1}$ (5.02 TeV)
- **Conditions**
 - $p_T^{\Upsilon(1S)} > 3.5$ GeV
 - $|y| < 2.4$
 - Cent. 10-90%

- **Results**
 - ATLAS, Prompt J/ψ, 5.02 TeV, $|y| < 2$, 0 - 60%
 - ALICE, Inclusive J/ψ, 5.02 TeV, $2.5 < |y| < 4$, 20 - 40%
 - CMS, Prompt J/ψ, 2.76 TeV, $1.6 < |y| < 2.4$, 10 - 60%
 - CMS, Prompt J/ψ, 2.76 TeV, $|y| < 2.4$, 10 - 60%

- **Additional Information**
 - Contrast result to J/ψ v_2
 - Different medium effect of charmonia and bottomonia

[EPJC 78 (2018) 784]
[PRL 119 (2017) 242301]
[EPJC 77 (2018) 252]
Comparison with ALICE

- $0 < |y| < 2.4$ CMS
- $2.5 < |y| < 4.0$ ALICE

- Similar $\Upsilon(1S) v_2$ for both CMS and ALICE results: compatible with zero
- Precise measurement in CMS with high lumi ~ 1.7 nb$^{-1}$
- No $|y|$ dependence found over wide rapidity range
Comparison with models

- Theory calculations with different ingredients
- Overall in agreement with data
- Need more data to provide significant input to theory models

Hong, Lee: HTL perturbation theory
- Used diffusion constant

Yao: Boltzmann transport model
- Real-time open heavy quark dist.

Du, Rapp: kinetic-rate equation
- T dependent binding energy
- Medium effect from lattice-QCD based EOS

Bhaduri et al: 3+1d aHydro model
- Initial T & η/s tuned to LHC data
- No recombination

[arXiv:1909.07696]
[arXiv:1812.02238]
[PRC 96(2017) 054901]
[arXiv:1809.06235]
- All three upsilon states in ordered suppression
 : $R_{pPb}(\Upsilon(1S)) > R_{pPb}(\Upsilon(2S)) > R_{pPb}(\Upsilon(3S))$

- Larger suppression in PbPb compared to pPb
 : $R_{pPb} > R_{AA}$

- Precise measurement of v_2 for $\Upsilon(1S)$
 : $v_2 = 0.007 \pm 0.011$ (stat.) ± 0.005 (syst.)

- First measurement of $\Upsilon(2S)$ elliptic flow (v_2) in heavy-ion collisions
Thank you
Motivation

- Bottomonia measured in pp, pPb and PbPb covering all phase space at 5.02 TeV
- Smaller suppression in pPb compared to PbPb collisions

pPb vs PbPb
\(\Upsilon \) in \(pPb \)

- \(\Upsilon \) suppressed for all states in all kinematic region
- No significant \(p_T \) and rapidity dependence
Y in pPb

CMS Preliminary

- pPb 34.6 nb⁻¹, pp 28.0 pb⁻¹ (5.02 TeV)

Motivation

- ψ (2S) [EPJC 77, 269 (2017)]
 - 6.5 < p_T < 10 GeV/c

CMS Preliminary

- 6 < p_T < 30 GeV/c

CMS Preliminary

- 10 < p_T < 30 GeV/c

Prompt J/ψ [EPJC 77, 269 (2017)]

- 6 < p_T < 30 GeV/c

CMS

- Prompt J/ψ [EPJC 77, 269 (2017)]
 - 10 < p_T < 30 GeV/c

LHCb

- ψ (2S) [EPJC 77, 269 (2017)]
 - 6.5 < p_T < 10 GeV/c

LHCb comovers

- ψ (2S) [EPJC 77, 269 (2017)]
 - 10 < p_T < 30 GeV/c

LHCb comovers

- ψ (2S) [EPJC 77, 269 (2017)]
 - 6.5 < p_T < 10 GeV/c

LHCb comovers

- ψ (2S) [EPJC 77, 269 (2017)]
 - 10 < p_T < 30 GeV/c

LHCb comovers

- ψ (2S) [EPJC 77, 269 (2017)]
 - 6.5 < p_T < 10 GeV/c

LHCb comovers

- ψ (2S) [EPJC 77, 269 (2017)]
 - 10 < p_T < 30 GeV/c
Bottomonia vs Charmonia

Charmonia (EPJC (2018) 78:509)

- Prompt J/ψ, $|y| < 2.4$, $6.5 < p_T < 50$ GeV
- Prompt $\psi(2S)$, $|y| < 1.6$, $6.5 < p_T < 30$ GeV

$p_T < 30$ GeV, $|y| < 2.4$

$\Upsilon(1S)$
$\Upsilon(2S)$
$\Upsilon(3S)$

68% CL 95% CL

PbPb 368/464 μb$^{-1}$, pp 28.0 pb$^{-1}$ (5.02 TeV)

CMS

Supplementary

Cent. 0-100%
Elliptic flow (v_2) of Υ in PbPb

- Consistent with zero in central and peripheral collisions in overall p_T range
- Similar behavior for mid-centrality collisions (10-50%) as result in 10-90%
- Hint of non-zero v_2 in intermediate p_T 6-10 GeV/c
 - $\sim 2.6\sigma$ including sys. & stat. uncertainty