

Latest D and Λ_c results in pp and Pb-Pb collisions with ALICE at the LHC

<u>G.M. Innocenti (CERN)</u> for the ALICE Collaboration

Quark Matter 2019 (Wuhan, China)

$D^0 R_{AA}$ in AA collisions

- Mechanisms of in-medium E_{loss}
- Test flavour dependence of E_{loss}
 - $E_{loss}(g) > E_{loss}(c) > E_{loss}(b)$

D_s/D^0 and Λ_c/D^0 ratios

 Study the mechanisms of charm recombination inside the medium

Physics motivation

$D^0 R_{AA}$ in AA collisions

- Mechanisms of in-medium E_{loss}
- Test flavour dependence of E_{loss}
 - $E_{loss}(g) > E_{loss}(c) > E_{loss}(b)$

D_s/D^0 and Λ_c/D^0 ratios

• Study the mechanisms of charm recombination inside the medium

D_s/D^0 or Λ_c/D^0 vs multiplicity?

- Can we observe recombination in pp?
- Can this explain the Λ_c/D^0 puzzle?

pp

pPb

S

Physics motivation

Heavy flavour interactions with the medium

D^o R_{AA} in central Pb-Pb collisions

First measurement of charm production down to 0 GeV/c!

ALI-PREL-320238

 \rightarrow Strong experimental constraints on charm E_{loss} and initial state effects (e.g. shadowing) \rightarrow New constraints on the total charm cross section at the LHC!

G.M. Innocenti, Quark Matter 2019, Wuhan (China)

Updated for QM 2019

<u>See S. Trogolo's poster</u>

$b \rightarrow D^0 R_{AA}$ in central Pb-Pb collisions

suppression down to very low p_T (2 GeV/c)

• R_{AA} (b \rightarrow D⁰) > R_{AA} (D⁰) at intermediate p_T

 \rightarrow From comparison to models, quantitative indication of flavour dependence of E_{loss}

G.M. Innocenti, Quark Matter 2019, Wuhan (China)

New for **QM 2019**

Measurement of non-prompt D⁰ production in central Pb-Pb collisions provide access to beauty

 Described well by calculations that include different *E*_{loss} for beauty and charm quarks

<u>See M. Cai's poster</u>

D_s/D^o ratios in central Pb-Pb

D_s/D⁰ to be enhanced in Pb-Pb vs pp in presence of charm recombination and strangeness enhancement

→ Supports the hypothesis of a relevant contribution of coalescence in charm hadronization in Pb-Pb

G.M. Innocenti, Quark Matter 2019, Wuhan (China)

- sizable enhancement at intermediate p_{T}
- Well described by Langevin calculations that include both fragmentation and recombination

<u>See S. Trogolo's poster</u>

Λ_c/D^0 ratios in Pb-Pb collisions

 Λ_c/D^0 (baryon/meson) ratio is also expected to increase in presence of charm recombination in the QGP

ALI-PREL-323761

 Moderate enhancement from pp to Pb-Pb at intermediate p_{T} within uncertainties

 \rightarrow Hint of baryon/meson enhancement, to be improved with future Run3 data

G.M. Innocenti, Quark Matter 2019, Wuhan (China)

ALI-PREL-325749

 Compatible with models that include recombination but still not conclusive to discriminate alternative HP

D^{0} , D_{s} and Λ_{c} production in pp collisions at 13 TeV vs multiplicity

D_s/D^o in pp collisions vs multiplicity

Can we observe D_s/D^0 enhancement in high multiplicity collisions?

Multiplicity estimator: number of "tracklets" formed in the Silicon Pixel detector

<u>Classes of barrel multiplicity:</u>

 $< dN_{ch}/d\eta > ~ 3.9$ <dN_{ch}/d η > ~ 6 (MB) <dN_{ch}/dη> ~ 13.7 <dN_{ch}/dη> ~ 28.1

New for **QM 2019**

G.M. Innocenti, Quark Matter 2019, Wuhan (China)

<u>See C. Terrevoli's poster</u>

D_s/D^o in pp collisions vs multiplicity

Can we observe D_s/D^0 enhancement in high multiplicity collisions?

Multiplicity estimator: number of "tracklets" formed in the Silicon Pixel detector

<u>Classes of barrel multiplicity:</u>

 $< dN_{ch}/d\eta > ~ 3.9$ <dN_{ch}/dη> ~ 6 (MB) <dN_{ch}/dη> ~ 13.7 <dN_{ch}/dη> ~ 28.1

New for **QM 2019**

ALI-PREL-336402

G.M. Innocenti, Quark Matter 2019, Wuhan (China)

<u>See C. Terrevoli's poster</u>

11

D_s/D^o in pp collisions vs multiplicity

Can we observe D_s/D^0 enhancement in high multiplicity collisions?

Multiplicity estimator: number of "tracklets" formed in the Silicon Pixel detector

<u>Classes of barrel multiplicity:</u>

 $< dN_{ch}/d\eta > ~ 3.9$ <dN_{ch}/dη> ~ 28.1

 \rightarrow D_s/D^o shows a hint of enhancement from low to high pp multiplicities

G.M. Innocenti, Quark Matter 2019, Wuhan (China)

New for **QM 2019**

<u>See C. Terrevoli's poster</u>

Λ_c/D^0 in pp collisions vs multiplicity

Can we observe Λ_c/D^0 enhancement in high multiplicity collisions?

Multiplicity estimator: number of "tracklets" formed in the Silicon Pixel detector

<u>Classes of barrel multiplicity:</u>

 $< dN_{ch}/d\eta > ~ 3.9$ <dN_{ch}/dη> ~ 6 (MB) <dN_{ch}/dη> ~ 13.7 <dN_{ch}/dη> ~ 28.1

New for **QM 2019**

ALI-PREL-336414

G.M. Innocenti, Quark Matter 2019, Wuhan (China)

<u>See C. Terrevoli's poster</u>

Λ_c/D^0 in pp collisions vs multiplicity

Can we observe Λ_c/D^0 enhancement in high multiplicity collisions?

Multiplicity estimator: number of "tracklets" formed in the Silicon Pixel detector

<u>Classes of barrel multiplicity:</u>

 $< dN_{ch}/d\eta > ~ 3.9$ <dN_{ch}/dη> ~ 28.1

 $\rightarrow \Lambda_c/D^0$ shows a significant increase for increasing multiplicities

G.M. Innocenti, Quark Matter 2019, Wuhan (China)

New for **QM 2019**

<u>See C. Terrevoli's poster</u>

14

Λ_c/D^o vs multiplicity across colliding systems

- Smooth increase from pp to p-Pb to Pb-Pb multiplicities
- ratio in low pp multiplicity $> e^+e^-$
- ratio in high pp multiplicity ~ Pb-Pb

 $4 < p_{-} < 6 \text{ GeV}/c$ 6 < p₋ < 8 GeV/*c* $\rho + \rho$ 10^{3□} 10² 10^{3} 10² 10 $\left< dN_{ch} / d\eta \right>_{\eta < 0.5}$ $\langle dN_{ch}/d\eta \rangle_{\eta < 0.5}$

 \rightarrow In qualitative agreement with the hypothesis of recombination that "saturates" already in pp!

A_c/D^o ratios in PYTHIA

ALI-PREL-336426

 largely underestimated when comparing to the default PYTHIA tune (Monash)

Λ_c/D^0 ratios in PYTHIA

ALI-PREL-336434

Alternative description that does not require the presence of a QGP-like medium! \rightarrow New experimental constraints on the properties of the proton-proton "medium"!

 largely underestimated when comparing to the **default PYTHIA tune (Monash)**

 Good agreement including color-reconnection processes (e.g. "junctions") between partons created in different MPIs

 \rightarrow "can enhance strange and baryon production!

New observables for stronger experimental constraints

 \rightarrow Looking forward to more accurate measurements with high luminosity pp data!

G.M. Innocenti, Quark Matter 2019, Wuhan (China)

 \rightarrow First measurement of $\Lambda_c z_{\parallel}$ at LHC!

18

The "heavy" picture!

The "heavy" picture!

Thank you for your attention!

D meson R_{AA} : comparison to models

Centrality 0-10%

- Strong discrimination power at 0-1 GeV/c
- TAMU (Langevin) well describes the data from lacksquarelow to high p_T

• In semi- peripheral events, most of the models show a good agreement with the data

D meson R_{AA} : comparison to models

D meson R_{AA} : comparison to models

BAMPS el. + rad., BAMPS el.:

- (shadowing)

TAMU:

POWLANG:

- more than in TAMU
- energy loss

Catania:

LIDO:

MC@sHQ+EPOS2:

overestimate the low p_T region probably because of absence of PDF modification in nuclei

In presence of radiative energy loss the Pb-Pb is pushed more at lower momenta and therefore the R_{AA} goes higher

• Good description of the low p_T region including very low p_T intervals thanks to EPS09 + shadowing. • FONLL as production mechanisms helps having a proper initial p_T shape • Description at high p_T suffers from missing radiative component

• The R_{AA} shape is shifted at high p_T . Effect of different HQ production mechanisms? • The effect of PDF modification is visible at low momenta where the RAA decreases significantly,

• At high p_T . The R_{AA} is smaller than data, which is surprising given that there is no radiative

• Results similar to TAMU, but with a shift of the p_T spectrum (or R_{AA}) at lower p_T . Effects of the different recombination?

Results similar to TAMU. Not available for the very low p_T region

• Pretty good agreement at high pT. Underestimate the low p_T region

Overview of theoretical calculations

Model	HQ production	Medium modelling	Quark-medium interaction	HQ hadronization	Tuning of medium coupling	Refere
BAMPS el.	MC@NL0 No PDF shadowing	3d+1 expansion parton cascade	Transport with Boltzmann rad. + coll.	Frag.	RHIC (then scaled by dN/ d η	<u>https</u> <u>arxiv.c</u> <u>abs</u> <u>1408.2</u>
TAMU	FONLL EPS09 (NLO) PDF shadowing	2d+1 expansion parton cascade	Transport with Langevin coll. only Diffusion in hadronic phase Improved space-mom correlation	Frag. + Rec.	Assume 1-QCD U potential	<u>https</u> <u>arxiv.c</u> <u>abs</u> <u>1401.3</u>
POWLANG	POWLANG EPS09 (NLO) PDF shadowing	2d+1 expansion with viscous fluido- dyn evolution	Transport with Langevin coll. only	Frag. + Rec.	Assume 1-QCD U potential	<u>https</u> <u>arxiv.c</u> <u>abs</u> <u>1410.6</u>
Catania	FONLL EPS09 (NLO) PDF shadowing	2d+1 expansion parton cascade	Transport with Langevin coll. only	Frag. + Rec. (different from TAMU?)	Assume 1-QCD U potential	<u>https</u> <u>arxiv.c</u> <u>pd⁻ 1712.00</u>
LIDO	FONLL EPS09 (NLO) PDF shadowing	2d+1 rel. fluido- dynamics	Transport with Langevin + empirical transport coefficients to capture the non-perturbative part. (Boltzmann)	Frag. + Rec.	Coefficients fixed with Bayesian analysis to LHC D and B results	<u>https</u> <u>arxiv.c</u> <u>pd</u> <u>1806.08</u>

Overview of theoretical calculations

Model	HQ production	Medium modelling	Quark-medium interaction	HQ hadronization	Tuning of medium coupling	Refere
PHSD	Pythia + string melting		Microscopic covariant transport Dynamical Quasiparticle Model	Local covariant transition rates		<u>https</u> <u>arxiv.c</u> <u>pd</u> <u>1908.00</u>
MC@ sHQ+ EPOS2	FONLL EPS09 (NLO) PDF shadowing	3d+1 expansion (EPOS model)	Transport with Boltzmann coll. (+rad when mentioned)	Frag. + Rec.	QGP transport coefficients fixed at LHC, adapted for RHIC	<u>https</u> <u>arxiv.(</u> <u>abs</u> <u>1305.(</u>
WHDG	FONLL no PDF shadowing	Glauber model nuclear overlap No fluido-dyn evol.	rad. + coll.	Frag.	RHIC (then scaled by dN/dη	
Vitev et al.	Non-zero mass VFNS no PDF shadowing	Glauber model nuclear overlap Ideal fluido-dyn Bjorken expansion	rad. + coll. In medium meson dissociation	Frag.	RHIC (then scaled by dN/dη	
CUJET3		Semi quark gluon monopole plasma	rad.	Frag.	Model parameters tuned on light flavor data	<u>https</u> <u>arxiv.</u> <u>abs</u> <u>1704.0</u>

fprompt extraction for non-prompt D⁰ RAA

non-prompt D⁰ R_{AA} : comparison to CMS b $\rightarrow J/\psi$

ALI-PREL-332605

RAA (prompt D⁰) / RAA (non-prompt D⁰)

ALI-PREL-332624

R_{AA} of D_s vs D⁰ in central and peripheral Pb-Pb

ALI-PREL-320222

Comparison to 2015 measurement in 0-80%

ALI-PREL-321698

Comparison to Λ_c/D^0 ratio from STAR

ALI-PREL-323761

arXiv 1910.14628v1

Ξ_{c}^{0} / D⁰ cross section ratio compared to PYTHIA

 $\Xi^{0}_{c} \rightarrow e^{+} \Xi^{-} v_{e}$

Λ_c longitudinal momentum fraction z_{II} in pp

ALI-PREL-337796

D^{0} , D_{s} and Λ_{c} corrected yields

ALI-PREL-336375

ALI-PREL-336350

G.M. Innocenti, Quark Matter 2019, Wuhan (China)

ALI-PREL-336359

D^{0} , D_{s} and Λ_{c} ratios to MB corrected yields

ALI-PREL-336391

ALI-PREL-336382

G.M. Innocenti, Quark Matter 2019, Wuhan (China)

ALI-PREL-336386

Λ_c /D⁰ vs multiplicity: comparison to PYTHIA

ALI-PREL-336438

ALI-PREL-336458

PYTHIA color reconnection parameters

Parameter	Ν
StringPT:sigma	=
StringZ:aLund	=
StringZ:bLund	=
StringFlav:probQQtoQ	=
StringFlav:ProbStoUD	=
	=
String Flow mech 001 to 000 io in	0
Sumgriav.probQQ1toQQ0jom	0
	1
MultiPartonInteractions:pT0Ref	=
BeamRemnants:remnantMode	=
BeamRemnants:saturation	-
ColourReconnection:mode	=
ColourReconnection:allowDoubleJunRem	=
ColourReconnection:m0	-
ColourReconnection: allowJunctions	-
ColourReconnection:junctionCorrection	-
ColourReconnection:timeDilationMode	-
ColourReconnection:timeDilationPar	-

	Monash	Mode 0	Mode 2	Mode 3
	= 0.335	= 0.335	= 0.335	= 0.335
	= 0.68	= 0.36	= 0.36	= 0.36
	= 0.98	= 0.56	= 0.56	= 0.56
	= 0.081	= 0.078	= 0.078	= 0.078
	= 0.217	= 0.2	= 0.2	= 0.2
	= 0.5,	= 0.0275,	= 0.0275,	= 0.0275,
licin	0.7,	0.0275,	0.0275,	0.0275,
Join	0.9,	0.0275,	0.0275,	0.0275,
	1.0	0.0275	0.0275	0.0275
'0Ref	= 2.28	= 2.12	= 2.15	= 2.05
ode	= 0	= 1	= 1	= 1
	-	= 5	= 5	= 5
	= 0	= 1	= 1	= 1
DoubleJunRem	= on	= off	= off	= off
	-	= 2.9	= 0.3	= 0.3
Junctions	-	= on	= on	= on
onCorrection	-	= 1.43	= 1.20	= 1.15
DilationMode	-	= 0	= 2	= 3
DilationPar	-	-	= 0.18	= 0.073

JHEP 08 (2015) 003, arXiv:1505.01681v1

Overview of color reconnection in PYTHIA

- partons created in different MPIs do not interact
- Color reconnection allowed between partons from different MPIs to minimize string length
- As implemented in Monash ColorReconnection:mode =0

- Uses a simple model of the colour rules of QCD to determine the formation of strings and introduce junctions
- Minimization of the string length over all possible configurations
- Include CR with MPIs and with beam remnants
- ColorReconnection:mode = 1

JHEP 08 (2015) 003, arXiv:1505.01681v1

D_s/D^o ratios in central Pb-Pb

 Low p_T interval (2-3 GeV/c) extracted using machine learning techniques

→ Supports the hypothesis of a relevant contribution of coalescence in charm hadronization in Pb-Pb

G.M. Innocenti, Quark Matter 2019, Wuhan (China)

D_{s}/D^{0} to be enhanced in PbPb vs pp in presence of charm recombination and strangeness enhancements

<u>D_s/D⁰ (PbPb) / D_s/D⁰ (pp):</u>

- sizable enhancement at intermediate pT
- Well described by Langevin calculations

<u>See S. Trogolo's poster</u>

Heavier charmed baryons

