

Studies of Strange and Non-Strange Beauty Productions in PbPb Collisions with the CMS Detector

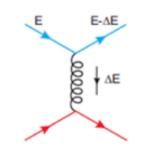
Zhaozhong Shi

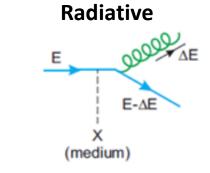
on behalf of the CMS Collaboration

Massachusetts Institute of Technology

Quark Matter 2019

11/06/2019




Open Heavy Flavor Physics in Relativistic Heavy Ion Collisions

Heavy quarks as hard probes to study QGP

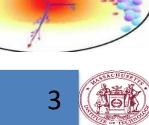
- Heavy quarks: $m_q \sim O(GeV)$
- ➡ Creation in the early hard scattering process. Calculable in pQCD.
- Long thermal relaxation time
- Significant fraction of energy loss when propagating through QGP
- ➡ Probe QGP by studying the energy loss mechanism

Energy loss mechanism of heavy quarks Collisional

Zhaozhong Shi

Partons Energy Loss in the Medium

- p_T spectrum and R_{AA}
- ➡ Test the calculations of perturbative QCD in pp collisions
- Understand the QGP medium effects on heavy flavor quarks
- Relevant physics
- Partons lose energy in the QGP medium
- Flavor dependence of energy loss
- Dead cone effect [1]
- Predictions
- ➡ Suppression of heavy flavor hadrons productions in relativistic heavy-ion collisions
- \Rightarrow R_{AA} of different hadrons reveals the difference in energy loss of different partons
- [1] Phys. Lett. B 519 (2001) 199


Zhaozhong Shi

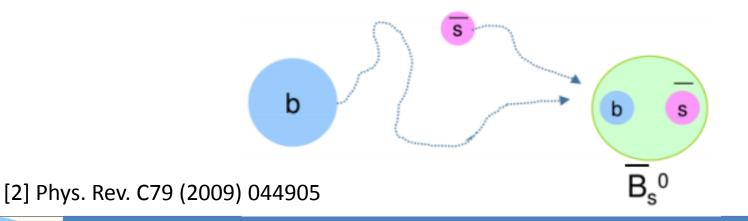
Quark Matter 2019, Wuhan, China

b quark

c quark

Pre-Equilibrium

Phase (< to


Strangeness Enhancement for Hadronization with Medium

Thermally and chemically equilibrated QGP medium

➡ Temperature > strange quark mass

Zhaozhong Shi

- \blacksquare Strange quark production is enhanced via $gg \rightarrow s\bar{s}$
- Expected strangeness enhancement in charm and bottom hadronization via the recombination mechanism [2]
- ➡ Understand the effects of the QGP medium on the hadronization of heavy quarks

Open Heavy Flavor Physics Measurements

Non–Prompt J/ψ and D^0

B^+ and B_s^0

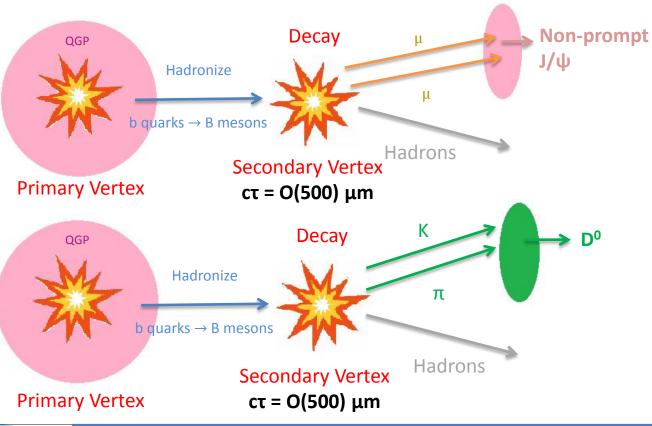
New: D_s and D^0

Zhaozhong Shi

Open Heavy Flavor Physics Measurements

Non–Prompt J/ψ and D^0

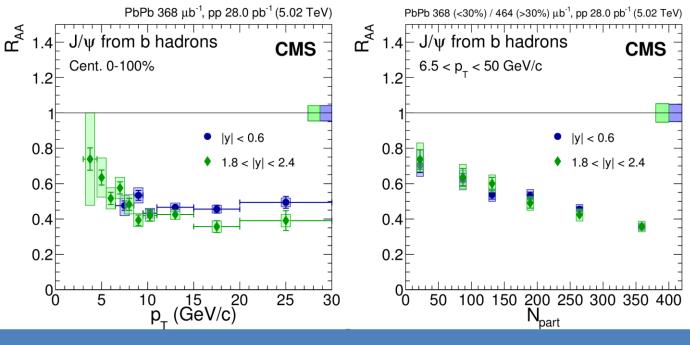
New: D_s and D^0



Zhaozhong Shi

Partial Decay: Non-Prompt J/ψ and D^0 Reconstruction

Quark Matter 2019, Wuhan, China


- Non-prompt J/ψ are reconstructed from muon pairs
- Muon identification, quality, acceptance are applied
- Non-prompt D^0 are reconstructed from $K\pi$ pairs
- Optimize BDT selections on Kπ tracks variables

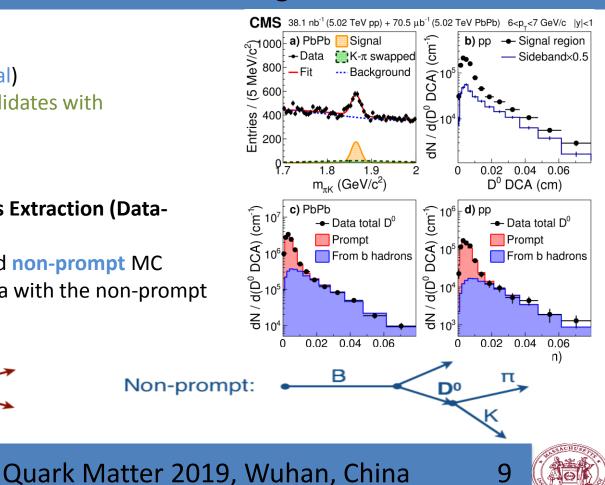
Zhaozhong Shi

Non-Prompt $J/\psi R_{AA}$ vs p_T and N_{part}

- Significant suppression of non-prompt J/ψ
- Higher suppression of non-prompt J/ψ in more central collisions
- No p_T dependence of non-prompt J/ψ on at $p_T > 5$ GeV/c

Quark Matter 2019, Wuhan, China

Zhaozhong Shi

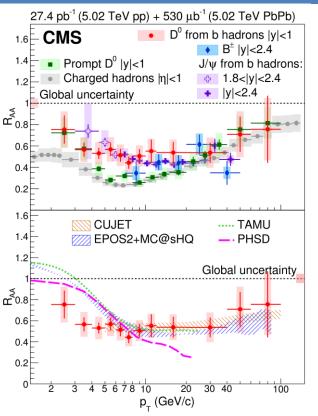

Non-Prompt D⁰ Reconstruction and Signal Extraction

- D^0 invariant mass fit:
- Double Gaussian (Signal)
- 3rd order polynomial (Combinatorial)
- Single Gaussian (K-π swapped: candidates with wrong mass assignment)
- Not using PID
- Non-prompt fraction of D^0 mesons Extraction (Data-Driven Method)
- ➡ Fit the data DCA with prompt and non-prompt MC
- → Correct the to inclusive D^0 spectra with the non-prompt fractions in pp and PbPb

Zhaozhong Shi

Non-Prompt $D^0 R_{AA}$ vs p_T

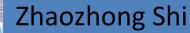
- Comparison with other heavy flavor measurements
- Non-prompt **D**⁰ suppression at 2 100 GeV/c
- Non-prompt D^0_{AA} is comparable to the B^+_{AA}
- Non-prompt D⁰ R_{AA} is higher than prompt D⁰ below 20 GeV/c → bottom quarks lose less energy than charm quarks in the QGP medium


Comparison with theoretical predictions

- Compatible with theories including collisional and radiative energy loss (eg. CUJET)
- Models with only collisional energy loss have different predictions at high p_T (eg. **PHSD**)

X. Jiechen et al., JHEP 2 (2016) 169
P. B. Gossiaux et al, Nucl. Phys., A931 (2014) 581
M. He et al., Phys. Lett. B 735 (2014) 445 – 450
T. Song et al., Phys. Rev. C 92 (2015)

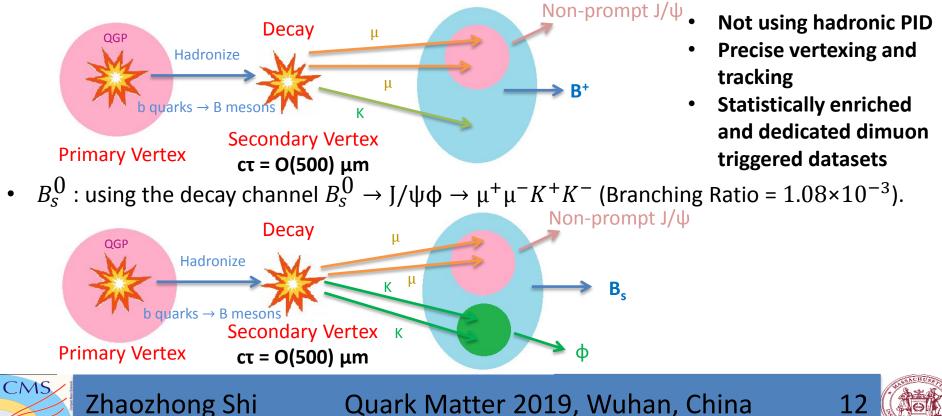
Zhaozhong Shi


Open Heavy Flavor Physics Measurements

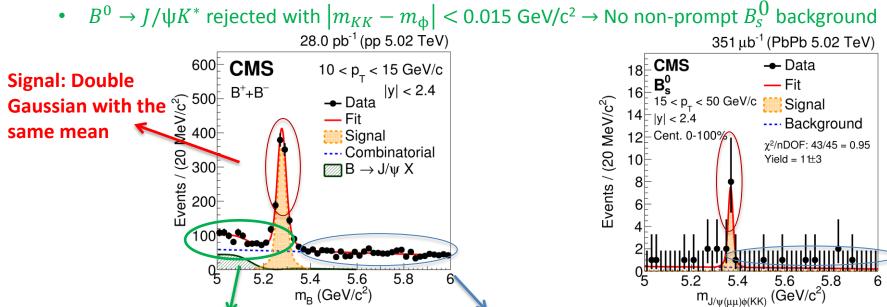
Non–Prompt J/ψ and D^0

B^+ and B_s^0

New: D_s and D^0



B mesons Decay Chains and Full Reconstruction


Reconstruction Strategies

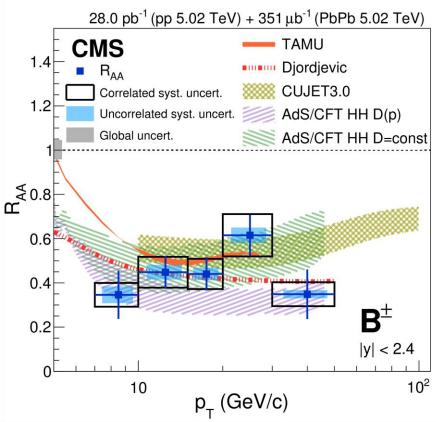
• B^+ : via the decay channel $B^+ \rightarrow J/\psi K^+ \rightarrow \mu^+ \mu^- K^+$ (Branching Ratio = 1.01×10^{-3}).

B^+ and B_s^0 Mesons Signal Extraction

- Signal extraction from fits on invariant mass distributions
- Background: combinatorial background + other B hadrons decays than our signal channels

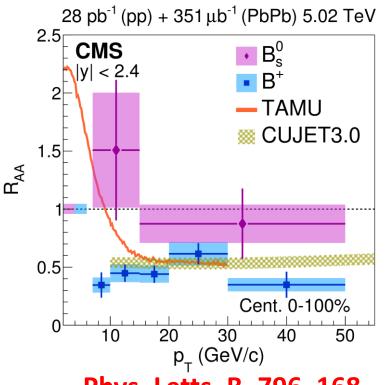
Non-prompt B decay background: Error function + 2 sided Gaussian Combinatorial Background: Linear Function

Zhaozhong Shi



B^+ Mesons R_{AA} and Comparison with Theoretical Predictions

- Supression of B⁺ meson production in PbPb collisions → b quarks lose energy in the QGP
- No obvious p_T dependence at 7 - 50 GeV/c
- Consistent with most theoretical predictions at 7 50 GeV/c
- M. He et al., Phys. Lett. B 735 (2014) 445
 M. Djordjevic, Phys. Rev. C 94 (2016) 044908
 X. Jiechen et al., JHEP 2 (2016) 169
 W. A. Horowitz, Phys. Rev. D 91 (2015) 085019
 P. B. Gossiaux et al, Nucl. Phys., A931 (2014) 581



Zhaozhong Shi

B_s^0 Mesons R_{AA} and Comparison with Theoretical Predictions

- Less suppression of B⁰_s mesons compared to B⁺ mesons in PbPb collisions → potentially due to strangeness enhancement in QGP
- Substantial statistical and systematic uncertainties in B⁰_s measurement
- M. He et al., Phys. Lett. B **735** (2014) 445 450 X. Jiechen et al., JHEP **2** (2016) 169

Phys. Letts. B. 796, 168

Zhaozhong Shi

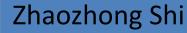
$B_s^0/B^+ R_{AA}$ and Comparison with Theoretical Predictions

- Complete cancelations of correlated systematic uncertainties of *B*⁰_s and *B*⁺
- Indication of greater B_s^0 / B^+ ratio than unity

28 pb⁻¹ (pp) + 351 µb⁻¹ (PbPb) 5.02 TeV 7^LCMS $\bullet R_{AA}^{B_s^0} / R_{AA}^{B^+}$ 6 |y| < 2.4- TAMU CUJET3.0 $\mathbf{B}^{\mathsf{B}^{\dagger}}_{\mathsf{AA}}$ AA / Cent. 0-100% 10 20 30 50 40 60 p_{_} (GeV/c) Phys. Letts. B. 796, 168

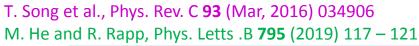
M. He et al., Phys. Lett. B **735** (2014) 445 – 450 X. Jiechen et al., JHEP **2** (2016) 169

Zhaozhong Shi

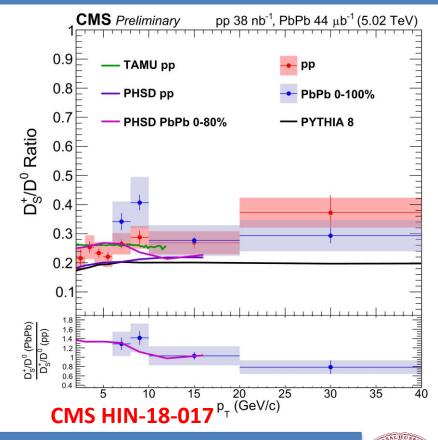

Open Heavy Flavor Physics Measurements

Non–Prompt J/ψ and D^0

New: D_s and D^0

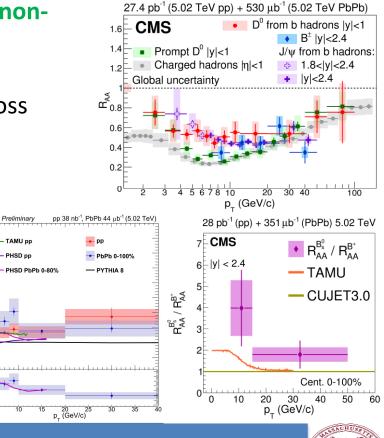

New: Studies of D_s and D^0 Mesons

- Precise measurements of prompt *D_s* and *D⁰* mesons productions in both pp above 3 GeV/c and PbPb above 6 GeV/c
- No significant strangeness enhancement at intermediate p_T 6 40 GeV/c in PbPb compared to **pp** within D_s/D^0 uncertainties
- Both **TAMU** and **PHSD** agree reasonably well with D_s/D^0 in **pp**


NEW RESUL

 PHSD predictions are comparable to the D_s /D⁰ double ratio

Zhaozhong Shi


Summary and Future Outlook

Quark Matter 2019, Wuhan, China

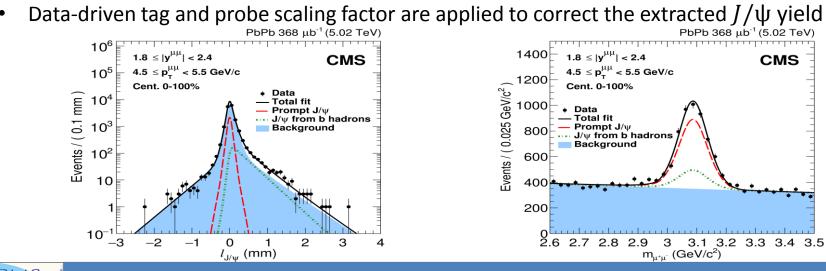
- Suppressions for B mesons, non-prompt J/ψ , and non-prompt D^0 productions in PbPb collisions
- Indication of flavor dependence of parton energy loss
- Hint of greater B_s^0 / B^+ ratio than unity
- No significant strangeness enhancement at intermediate p_T 6 40 GeV/c in PbPb compared to pp within D_s/D^0 uncertainties
- More precise and differential B mesons measurements with 2017 pp and 2018 PbPb datasets in the future

Zhaozhong Shi

CMS

Thank You

Back up

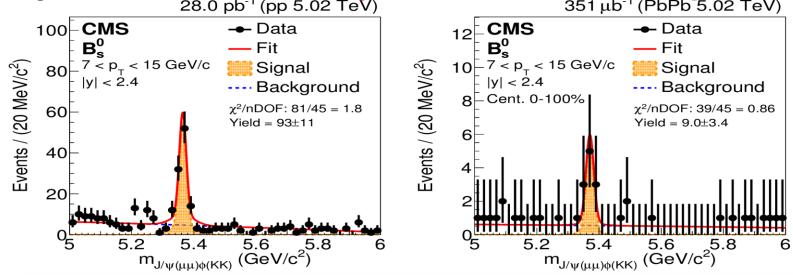


Non-Prompt J/ψ Reconstruction and Signal Extraction

Non-Prompt J/ψ analysis techniques

Zhaozhong Shi

- Muon quality, identification, and acceptance applied to the muons selections
- Muons pairs fits to a comment vertex $\rightarrow J/\psi$ candidates
- Prompt J/ψ component are obtained from the proper decay length l_{xy} distribution
- Non-prompt J/ψ is exacted by subtracting the prompt J/ψ component from the inclusive $J/\psi \rightarrow \mu^+\mu^-$ decay channel



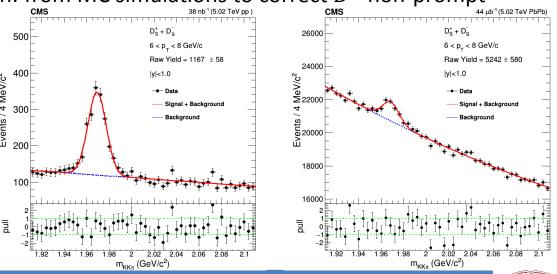
B_s^0 Mesons Signal Extraction

- Signal Extraction from unbinned fit (maximum likelihood) on the invariant distribution
- Rejecting $B^0 \rightarrow J/\psi K^*$ contribution by requiring 0.015 GeV/c² near ϕ meson PDG mass
- Background: combinatorial background only (no other contribution of B hadron decay that will affect our signal region)
- Fitting Function: Double Gaussian Signal + Linear combinatorial background 28.0 pb⁻¹ (pp 5.02 TeV)
 351 μb⁻¹ (PbPb 5.02 TeV)

Zhaozhong Shi

$D_{\rm s}$ Reconstruction and Signal Extraction

- Decay channel: $D_s \rightarrow \phi \pi \rightarrow K^+ K^- \pi$
- Optimization of with rectangular cut decay length significance and vertex probability using TMVA framework in ROOT with the decay angle $\alpha < 0.12$ and ϕ meson mass window fixed
- Semi-data driven non-prompt D_s fraction extraction
 - 1) D_s to D^0 relative scale: fragmentation fraction from LHCb and branching ratio from PDG


2) p_T differential spectra correction: from MC simulations to correct D^0 non-prompt

MeV/c²

Events /

fraction vs p_T to D_s

- Unbinned maximum likelihood fits for signal extraction:
 - Signal: double Gaussian with the same mean
 - Background: Second Order Chebyshev polynomial

