Measurements of the exotic tetraquark candidate X(3872) in pp and pPb

Matt Durham
for the LHCb Collaboration
durham@lanl.gov
A schematic model of baryons and mesons

M. Gell-Mann
California Institute of Technology, Pasadena, California

Received 4 January 1964

A simpler and more elegant scheme can be constructed if we allow non-integral values for the charges. We can dispense entirely with the basic baryon b if we assign to the triplet t the following properties: spin $\frac{1}{2}$, $F = -\frac{1}{2}$, and baryon number $\frac{1}{2}$. We then refer to the members u_3, d_3, and s_3 of the triplet as "quarks". q and the members of the anti-triplet as anti-quarks \bar{q}. Baryons can now be constructed from quarks by using the combinations (qqq), (qqq), etc., while mesons are made out of (q\bar{q}), (qq\bar{q}), etc. It is assuming that the lowest baryon configuration (qqq) gives just the representations 1, 8, and 10 that have been observed, while the lowest meson configuration (q\bar{q}) similarly gives just 1 and 8.

In general, we would expect that baryons are built not only from the product of three aces, AAA, but also from \overline{AAA}, \overline{AAAA}, etc., where \overline{A} denotes an anti-ace. Similarly, mesons could be formed from \overline{AA}, \overline{AAAA} etc. For the low mass mesons and baryons we will assume the simplest possibilities, \overline{AA} and AAA, that is, "deuces and treys".
A simpler and more elegant scheme can be constructed if we allow non-integral values for the charges. We can dispense entirely with the basic baryon b if we assign to the triplet t the following properties: spin $\frac{1}{2}$, $z = -\frac{1}{2}$, and baryon number $\frac{1}{2}$. We then refer to the members u^\dagger, d^\dagger, and s^\dagger of the triplet as "quarks" q and the members of the anti-triplet as anti-quarks \bar{q}. Baryons can now be constructed from quarks by using the combinations $(q q q)$, $(q q q q)$, etc., while mesons are made out of $(q \bar{q})$, $(q q \bar{q})$, etc. It is assuming that the lowest baryon configuration $(q q q)$ gives just the representations 1, 8, and 10 that have been observed, while the lowest meson configuration $(q \bar{q})$ similarly gives just 1 and 8.

States with >3 quarks have been expected since the beginning of the quark model.
Conventional $c\bar{c}$ States

Nonrelativistic potential model: solve Schrodinger equation with the potential

$$V^{(c\bar{c})}(r) = -\frac{4}{3} \frac{\alpha_s}{r} + br + \frac{32\pi\alpha_s}{9m_c^2} \delta(r) S_c \cdot \bar{S}_{\bar{c}}$$

Barnes, Godfrey, Swanson, Phys. Rev. D 72, 054026 (2005)

Calculated States
Measured States

Rev. Mod. Phys. 90, 015003 (2018)
Conventional $c \bar{c}$ States

New charmonium states still being found: LHCb observed state consistent with $\psi_3 (1^3 D_3)$ found in $D\bar{D}$ and D^+D^- mass spectra in 2019

Crucial to account for conventional states when searching for exotics

Rev. Mod. Phys. 90, 015003 (2018)
Exotic $c\bar{c}$ States

20+ states containing $c\bar{c}$ have been discovered since 2003 that do not fit in the picture of typical charmonium:
Collectively known as “XYZ” particles

Rev. Mod. Phys. 90, 015003 (2018)
Exotic $c\bar{c}$ States

20+ states containing $c\bar{c}$ have been discovered since 2003 that do not fit in the picture of typical charmonium:
Collectively known as "XYZ" particles

Multiple explanations explored in literature:

- Compact tetraquark/pentaquark
- Diquark-diquark
 - $u\bar{c}$ \(\rightarrow\) $u\bar{c}$
- Hadrocharmonium/adjoint charmonium
 - $u\bar{c}$ \(\rightarrow\) $u\bar{c}$

Rev. Mod. Phys. 90, 015003 (2018)
Exotic $c\bar{c}$ States

20+ states containing $c\bar{c}$ have been discovered since 2003 that do not fit in the picture of typical charmonium: Collectively known as “XYZ” particles

Multiple explanations explored in literature:

- **Compact tetraquark/pentaquark**
 - Diquark-diquark
 - PRD 71, 014028 (2005)
 - PLB 662 424 (2008)
 - Hadrocharmonium/adjoint charmonium
 - PLB 666 344 (2008)
 - PLB 671 82 (2009)

- **Hadronic Molecules**
 - PRD 77 014029 (2008)
 - PRD 100 0115029(R) (2019)
Exotic $c\bar{c}$ States

20+ states containing $c\bar{c}$ have been discovered since 2003 that do not fit in the picture of typical charmonium: Collectively known as “XYZ” particles

Multiple explanations explored in literature:

- **Compact tetraquark/pentaquark**
- **Hadronic Molecules**
- **Diquark-diquark**
 - PRD 71, 014028 (2005)
 - PLB 662 424 (2008)
- **Hadrocharmonium/adjoint charmonium**
 - PLB 666 344 (2008)
 - PLB 671 82 (2009)
- **Mixtures of exotic + conventional states**
 \[X = a \left| c\bar{c} \right\rangle + b \left| c\bar{c}q\bar{q} \right\rangle \]

Rev. Mod. Phys. 90, 015003 (2018)
X(3872) - a puzzle

• The first exotic hadron – discovered in $J/\psi\pi^+\pi^-$ mass spectrum from B decays by Belle in 2003

• LHCb measured quantum numbers (PRL 110 222001 2013)
 - Incompatible with expected charmonium states

Recently renamed $\chi_{c1}(3872)$ by PDG
X(3872) - a puzzle

Recently renamed $\chi_{c1}(3872)$ by PDG

- The first exotic hadron – discovered in $J/\psi\pi^+\pi^-$ mass spectrum from B decays by Belle in 2003
- LHCb measured quantum numbers (PRL 110 222001 2013)
 - Incompatible with expected charmonium states
- Mass is consistent with sum of D^0 and D^{*0} masses:
 $$M_{\chi_{c1}(3872)} - (M_{D^0} + M_{D^{*0}}) = 0.01 \pm 0.27 \text{ MeV}$$
X(3872) - a puzzle

- The first exotic hadron – discovered in $J/\psi \pi^+ \pi^-$ mass spectrum from B decays by Belle in 2003
- LHCb measured quantum numbers (PRL 110 222001 2013)
 - Incompatible with expected charmonium states
- Mass is consistent with sum of D^0 and \bar{D}^*0 masses:
 \[M_{\chi_{c1}(3872)} - (M_{D^0} + M_{\bar{D}^*0}) = 0.01 \pm 0.27 \text{ MeV} \]

$D^0\bar{D}^*$ Molecule

- Very small binding energy
- Very large radius, ~7 fm

Recently renamed $\chi_{c1}(3872)$ by PDG
X(3872) - a puzzle

- The first exotic hadron – discovered in $J/\psi\pi^+\pi^-$ mass spectrum from B decays by Belle in 2003
- LHCb measured quantum numbers (PRL 110 222001 2013)
 - Incompatible with expected charmonium states
- Mass is consistent with sum of D^0 and \bar{D}^*0 masses:
 \[M_{\chi_c(3872)} - (M_{D^0} + M_{\bar{D}^*0}) = 0.01 \pm 0.27 \text{ MeV} \]

$D^0\bar{D}^*$ Molecule

D^0

\bar{D}^*

Very small binding energy

Very large radius, ~7 fm

Tightly bound via color exchange between diquarks

Small radius, ~1 fm

Recently renamed $\chi_c(3872)$ by PDG
Effects of Binding Energy

- Suppression of weakly-bound quarkonia states has been studied for decades in pA collisions
 - Ratios of $\psi^{(2S)}/J/\psi$ and $Y(2S,3S)/Y(1S)$

<table>
<thead>
<tr>
<th>state</th>
<th>η_c</th>
<th>J/ψ</th>
<th>χ_c0</th>
<th>χ_c1</th>
<th>χ_c2</th>
<th>ψ'</th>
</tr>
</thead>
<tbody>
<tr>
<td>mass [GeV]</td>
<td>2.98</td>
<td>3.10</td>
<td>3.42</td>
<td>3.51</td>
<td>3.56</td>
<td>3.69</td>
</tr>
<tr>
<td>ΔE [GeV]</td>
<td>0.75</td>
<td>0.64</td>
<td>0.32</td>
<td>0.22</td>
<td>0.18</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Effects of Binding Energy

• Suppression of weakly-bound quarkonia states has been studied for decades in pA collisions
 • Ratios of $\psi^{(2S)}/J/\psi$ and $\Upsilon(2S,3S)/\Upsilon(1S)$

<table>
<thead>
<tr>
<th>state</th>
<th>η_c</th>
<th>J/ψ</th>
<th>χ_{c0}</th>
<th>χ_{c1}</th>
<th>χ_{c2}</th>
<th>ψ'</th>
</tr>
</thead>
<tbody>
<tr>
<td>mass [GeV]</td>
<td>2.98</td>
<td>3.10</td>
<td>3.42</td>
<td>3.51</td>
<td>3.56</td>
<td>3.69</td>
</tr>
<tr>
<td>ΔE [GeV]</td>
<td>0.75</td>
<td>0.64</td>
<td>0.32</td>
<td>0.22</td>
<td>0.18</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Effects of Binding Energy

- Suppression of weakly-bound quarkonia states has been studied for decades in pA collisions
 - Ratios of $\psi(2S)/\psi$ and $\Upsilon(2S,3S)/\Upsilon(1S)$
- In general, final state effects are required to explain difference in suppression between states
- Prevalent in regions with high particle multiplicity

<table>
<thead>
<tr>
<th>state</th>
<th>η_c</th>
<th>J/ψ</th>
<th>χ_c0</th>
<th>χ_c1</th>
<th>χ_c2</th>
<th>ψ'</th>
</tr>
</thead>
<tbody>
<tr>
<td>mass [GeV]</td>
<td>2.98</td>
<td>3.10</td>
<td>3.42</td>
<td>3.51</td>
<td>3.56</td>
<td>3.69</td>
</tr>
<tr>
<td>ΔE [GeV]</td>
<td>0.75</td>
<td>0.64</td>
<td>0.32</td>
<td>0.22</td>
<td>0.18</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Talk by Shanzen Chen

Poster by Jana Crkovska

LHCb Preliminary
pPb $\sqrt{s_{NN}} = 8.16$ TeV
converted photons
$1.5 < y < 4.0$

- χ_c1
- χ_c2

cf. PLB 749 98 (2015)
Effects of Binding Energy

- Suppression of weakly-bound quarkonia states has been studied for decades in pA collisions
 - Ratios of $\psi(2S)/J/\psi$ and $\Upsilon(2S,3S)/\Upsilon(1S)$
- In general, final state effects are required to explain difference in suppression between states
- Prevalent in regions with high particle multiplicity
- Weakly bound hadronic molecules may show similar effects.

<table>
<thead>
<tr>
<th>state</th>
<th>η_c</th>
<th>J/ψ</th>
<th>χ_{c0}</th>
<th>χ_{c1}</th>
<th>χ_{c2}</th>
<th>ψ'</th>
</tr>
</thead>
<tbody>
<tr>
<td>mass [GeV]</td>
<td>2.98</td>
<td>3.10</td>
<td>3.42</td>
<td>3.51</td>
<td>3.56</td>
<td>3.69</td>
</tr>
<tr>
<td>ΔE [GeV]</td>
<td>0.75</td>
<td>0.64</td>
<td>0.32</td>
<td>0.22</td>
<td>0.18</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Poster by Jana Crkovska

Talk by Shanzen Chen
Probing X(3872) structure via interactions with the underlying event

Prompt production:
- X(3872) produced at collision vertex can be subject to further interactions with co-moving particles (medium?) produced in the event
- Potentially subject to breakup effects

Event display of $B_s^0 \rightarrow \mu^+ \mu^-$ candidate, PRL 118 191801 (2017)
Probing $X(3872)$ structure via interactions with the underlying event

Prompt production:
- $X(3872)$ produced at collision vertex can be subject to further interactions with co-moving particles (medium?) produced in the event
- Potentially subject to breakup effects

Production in b-decays:
- Hadrons containing b travel down the beampipe and decay away from the primary vertex and decay in vacuum
- $X(3872)$ from decays not subject to further interactions
- Control sample

Event display of $B_s^0 \rightarrow \mu^+ \mu^-$ candidate, PRL 118 191801 (2017)
The LHCb Detector

\[X(3872) \to J/\psi \pi^+ \pi^- \]

Vertex detector (VELO):
- Separation of prompt and \(b \)-decay production
- Number of VELO tracks gives measure of event activity

Two RICH detectors:
- Pion identification

Muon System:
- Layers of absorber/tracking
- Muon hardware trigger

Rapidity coverage: \[2 < \eta < 5 \]
X(3872) selection

Reconstruct the $\mu^+\mu^-\pi^+\pi^-$ final state from the decays:

\[X(3872) \rightarrow J/\psi (\rightarrow \mu^+\mu^-)\rho (\rightarrow \pi^+\pi^-) \]

\[\psi(2S) \rightarrow J/\psi (\rightarrow \mu^+\mu^-)\pi^+\pi^- \]

Select J/ψ from dimuons, combine with two identified pions. Perform kinematic refit, constraining J/ψ mass to known value and all four tracks to identical vertex.

Direct comparison between conventional charmonium $\psi(2S)$ and exotic $X(3872)$ via ratio of cross sections:

\[\frac{\sigma_{Xe1}(3872)}{\sigma_{\psi(2S)}} \times \frac{B[\chi_{e1}(3872) \rightarrow J/\psi \pi^+\pi^-]}{B[\psi(2S) \rightarrow J/\psi \pi^+\pi^-]} \]
Simultaneous fit to invariant mass and pseudo proper time spectrum:

\[t_z = \frac{z_{\text{decay}} - z_{\text{PV}}}{p_z} M \]

Fit to mass constrains S/B while fit to \(t_z \) constrains prompt fraction.
Prompt fraction

\[f_{\text{prompt}} = \frac{N_{\text{prompt}}}{N_{\text{prompt}} + N_{b-\text{decay}}} \]

- Significant decrease in prompt fraction of both \(X(3872) \) and \(\psi(2S) \) as event activity increases:
Prompt fraction

\[f_{\text{prompt}} = \frac{N_{\text{prompt}}}{N_{\text{prompt}} + N_{\text{b-decay}}} \]

- Significant decrease in prompt fraction of both \(X(3872) \) and \(\psi(2S) \) as event activity increases:
 - Events with \(b\bar{b} \) production naturally have higher multiplicity, due to fragmentation and decays
 - OPAL, PLB 550 33 (2002)
Prompt fraction

\[f_{\text{prompt}} = \frac{N_{\text{prompt}}}{N_{\text{prompt}} + N_{b-\text{decay}}} \]

- Significant decrease in prompt fraction of both \(X(3872) \) and \(\psi(2S) \) as event activity increases:

- Events with \(b\bar{b} \) production naturally have higher multiplicity, due to fragmentation and decays
 - OPAL, PLB 550 33 (2002)

- Formation of prompt \(X(3872) \) and \(\psi(2S) \) may be disrupted at the vertex, which cannot affect production via \(b \) decays in vacuum.
Ratio of cross sections

\[
\frac{\sigma_{\chi_{c1}(3872)}}{\sigma_{\psi(2S)}} \times \frac{B[\chi_{c1}(3872) \rightarrow J/\psi \pi^+ \pi^-]}{B[\psi(2S) \rightarrow J/\psi \pi^+ \pi^-]} = \frac{N_{\chi_{c1}(3872)} f_{\chi_{c1}(3872)}^{\text{prompt}}}{N_{\psi(2S)} f_{\psi(2S)}^{\text{prompt}}} \times \frac{\varepsilon_{\psi(2S)}}{\varepsilon_{\chi_{c1}(3872)}}
\]
Ratio of cross sections

\[
\frac{\sigma_{\chi_{c1}(3872)}}{\sigma_{\psi(2S)}} \times \frac{B[\chi_{c1}(3872) \rightarrow J/\psi \pi^+\pi^-]}{B[\psi(2S) \rightarrow J/\psi \pi^+\pi^-]} = \frac{N_{\chi_{c1}(3872)} f_{\chi_{c1}(3872)}^{\text{prompt}}}{N_{\psi(2S)} f_{\psi(2S)}^{\text{prompt}}} \times \frac{\varepsilon_{\chi_{c1}(3872)}}{\varepsilon_{\psi(2S)}}
\]

LHCb Preliminary

pp \(\sqrt{s} = 8 \) TeV

Prompt Component:
Increasing suppression of \(X(3872) \) production relative to \(\psi(2S) \) as event activity increases
Ratio of cross sections

\[
\frac{\sigma_{\chi c1(3872)}}{\sigma_{\psi(2S)}} \times \frac{\mathcal{B}[\chi c1(3872) \rightarrow J/\psi \pi^+\pi^-]}{\mathcal{B}[\psi(2S) \rightarrow J/\psi \pi^+\pi^-]} = \frac{N_{\chi c1(3872)}}{N_{\psi(2S)}} \frac{f_{\chi c1(3872)}}{f_{\psi(2S)}} \times \frac{\varepsilon_{\psi(2S)}}{\varepsilon_{\chi c1(3872)}}
\]

Prompt Component:
Increasing suppression of \(X(3872)\) production relative to \(\psi(2S)\) as event activity increases.

\(b\)-decay component:
No significant change in relative production, as expected for decays in vacuum. Ratio is set by \(b\) decay branching fractions.

Consistent with ATLAS measurement:
\[
R = 0.0395 \pm 0.0032 \pm 0.0008 \quad (p_T>10\text{GeV}/c)
\]

LHCb Preliminary

\(pp\) \(\sqrt{s} = 8\text{ TeV}\)

- Prompt
- \(b\) decays

\(p_T > 5\text{ GeV}/c\)

LHCb-CONF-2019-005

\(JHEP 2017:117 (2017)\)
X(3872) in pPb collisions

LHCb Preliminary
PbPb $\sqrt{s_{NN}} = 8.16$ TeV
$-5.0 < y^* < -2.5$
$p_T > 5$ GeV/c

- Total fit
- Background
- $\chi_{c1}(3872)$

Entries/(4 MeV/c^2)

LHCb Preliminary
pPb $\sqrt{s_{NN}} = 8.16$ TeV
$1.5 < y^* < 4.0$
$p_T > 5$ GeV/c

- Total fit
- Background
- $\chi_{c1}(3872)$

Entries/(4 MeV/c^2)

Theorists: predictions welcome

Matt Durham - LANL
Summary

• The study of exotic hadrons is an active area of discovery in QCD

• Data and techniques from heavy ion physics give us a new window into dynamics of exotic states in a dense QCD environment:
 • Prompt fraction of $X(3872)$ and $\psi(2S)$ decreases with multiplicity in pp
 • Relative production in b-decays shows no significant change with multiplicity
 • Indications that prompt $X(3872)$ may be suppressed more than prompt $\psi(2S)$ as multiplicity increases

• Consistent with the interpretation of $X(3872)$ as a large, weakly bound state such as a hadronic molecule.

This work is supported by the US Dept. of Energy/Office of Science/Nuclear Physics Division
Recent Hadronic Molecule Candidates

P_c pentaquark states recently discovered by LHCb are very close to mass thresholds for hadronic molecules.
χ_c States in pPb

See Poster by Jana Crkovska
Observation of the $\Lambda_{b}^{0} \rightarrow \chi_{c1}(3872)pK^{-}$ decay

The LHCb collaboration

E-mail: Ivan.Belyaev@itep.ru

ABSTRACT: Using proton-proton collision data, collected with the LHCb detector and corresponding to 1.0, 2.0 and 1.9 fb$^{-1}$ of integrated luminosity at the centre-of-mass energies of 7, 8, and 13 TeV, respectively, the decay $\Lambda_{b}^{0} \rightarrow \chi_{c1}(3872)pK^{-}$ with $\chi_{c1}(3872) \rightarrow J/\psi \pi^{+}\pi^{-}$ is observed for the first time. The significance of the observed signal is in excess of seven standard deviations. It is found that (58 ± 15)% of the decays proceed via the two-body intermediate state $\chi_{c1}(3872)\Lambda(1520)$. The branching fraction with respect to that of the $\Lambda_{b}^{0} \rightarrow \psi(2S)pK^{-}$ decay mode, where the $\psi(2S)$ meson is reconstructed in the $J/\psi \pi^{+}\pi^{-}$ final state, is measured to be:

$$\frac{B(\Lambda_{b}^{0} \rightarrow \chi_{c1}(3872)pK^{-})}{B(\Lambda_{b}^{0} \rightarrow \psi(2S)pK^{-})} \times \frac{B(\chi_{c1}(3872) \rightarrow J/\psi \pi^{+}\pi^{-})}{B(\psi(2S) \rightarrow J/\psi \pi^{+}\pi^{-})} = (5.4 \pm 1.1 \pm 0.2) \times 10^{-2},$$

where the first uncertainty is statistical and the second is systematic.

KEYWORDS: B physics, Branching fraction, Exotics, Hadron-Hadron scattering (experiments)

ArXiv ePrint: 1907.00954