

Thermal quarkonium physics from Lattice QCD

From correlators to spectral functions – case studies in the quenched approximation

Olaf Kaczmarek

University of Bielefeld & CCNU Wuhan

- I) Thermal quarkonium physics in the pseudoscalar channel [Y. Burnier, H.-T. Ding, OK et al. JHEP11 (2017) 206]
- II) Thermal quarkonium physics in the vector channel

[H.T. Ding, OK, A.-L. Lorenz et al., paper in preparation]

III) Heavy quark momentum diffusion coefficient

[A.Francis, OK, et al., PRD92(2015)116003]

IV) Correlation functions with gradient flow – towards full QCD

[L. Altenkort, H.T. Shu, H. Ohno, OK et al., work in progress]

Vector-meson spectral function – hard to separate different scales

$$G(\tau, \vec{p}, T) = \int_{0}^{\infty} \frac{\mathrm{d}\omega}{2\pi} \rho(\omega, \vec{p}, T) K(\tau, \omega, T)$$

$$K(\tau, \omega, T) = \frac{\cosh\left(\omega(\tau - \frac{1}{2T})\right)}{\sinh\left(\frac{\omega}{2T}\right)}$$

Spectral functions in the QGP

 $-T \approx T_c$ $-T >> T_c$ $-T = \infty$

Different contributions and scales enter

in the spectral function

2

- continuum at large frequencies
- possible bound states at intermediate frequencies
- transport contributions at small frequencies
- in addition cut-off effects on the lattice

notoriously difficult to extract from correlation functions

$$G_{\mu\nu}(\tau, \vec{x}) = \langle J_{\mu}(\tau, \vec{x}) J_{\nu}^{\dagger}(0, \vec{0}) \rangle$$

$$J_{\mu}(\tau, \vec{x}) = 2\kappa Z_{V} \bar{\psi}(\tau, \vec{x}) \Gamma_{\mu} \psi(\tau, \vec{x})$$

→ large lattices and continuum extrapolation needed
→ still only possible in the quenched approximation
→ use perturbation theory to constrain the UV behavior

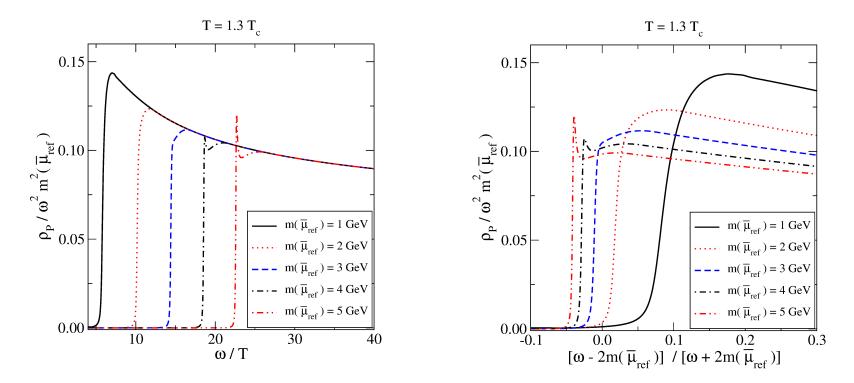
 $2m_q$ (narrow) transport peak at small ω : $\rho(\omega \ll T) \simeq 2\chi_{00} \frac{T}{M} \frac{\omega \eta}{\omega^2 + \eta^2}$, $\eta = \frac{T}{MD}$

[Y. Burnier, H.-T. Ding, OK et al. JHEP11 (2017) 206]

Using continuum extrapolated correlation functions from Lattice QCD

$$G_{\rm \scriptscriptstyle P}(\tau) \ \ \equiv \ \ M_{\rm \scriptscriptstyle B}^2 \int_{\vec{x}} \Bigl \langle (\bar{\psi} i \gamma_5 \psi)(\tau, \vec{x}) \ (\bar{\psi} i \gamma_5 \psi)(0, \vec{0}) \Bigr \rangle_{\rm c} \ , \quad 0 < \tau < \frac{1}{T} \ ,$$

and best knowledge on the spectral function from **perturbation theory and pNRQCD** interpolated between different regimes



we will focus on the pseudo-scalar channel (no transport contribution in this channel)

Lattice set-up

quenched SU(3) gauge configurations (separated by 500 updates)

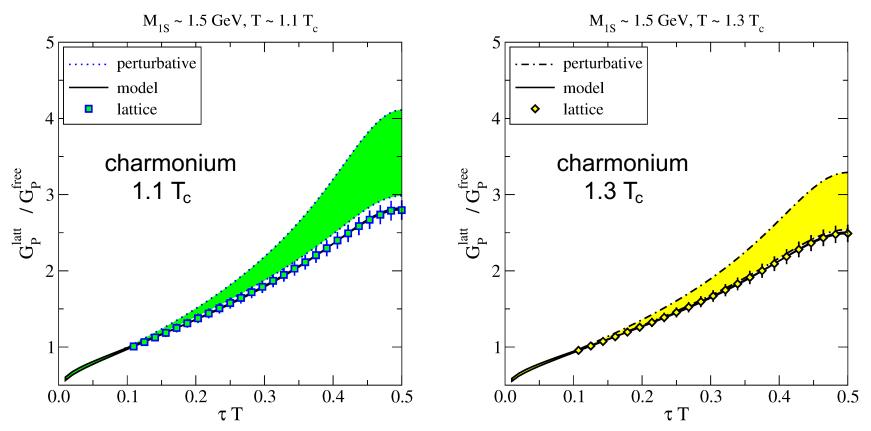
non-perturbatively O(a) clover improved Wilson fermion valence quarks

6 quark masses between charm and bottom \rightarrow interpolate to physical c and b mass

eta	$N_{\rm s}$	N_{τ}	confs	r_0/a	$T/T_{\rm c}$	$c_{\rm SW}$	$\kappa_{ m c}$	κ	$\frac{m^2(1/a)}{m^2(\bar{\mu}_{\rm ref})}$
7.192	96	48	237	26.6	0.74	1.367261	0.13442	0.12257, 0.12800, 0.13000, 0.13100, 0.13100, 0.13150, 0.13194	0.6442
		32	476		1.12			0.13100, 0.13130, 0.13134	
		28	336		1.27				
		24	336		1.49				
		16	237		2.23				
7.394	120	60	171	33.8	0.76	1.345109	0.13408	0.124772, 0.12900, 0.13100, 0.13150, 0.132008, 0.132245	0.6172
		40	141		1.13				
		30	247		1.51				
		20	226		2.27				
7.544	144	72	221	40.4	0.75	1.330868	0.13384	0.12641, 0.12950, 0.13100, 0.13180, 0.13220, 0.13236	0.5988
		48	462		1.13				
		42	660		1.29				
		36	288		1.51				
		24	237		2.26				
7.793	192	96	224	54.1	0.76	1.310381	0.13347	$0.12798, 0.13019, 0.13125, \\0.13181, 0.13209, 0.13221$	0.5715
		64	249		1.13				
		56	190		1.30				
		48	210		1.51				
		32	235		2.27				

In this talk: only results based on continuum extrapolated correlation functions See [Y. Burnier, H.-T. Ding, OK et al. JHEP11 (2017) 206] for more details

Modelling the spectral function



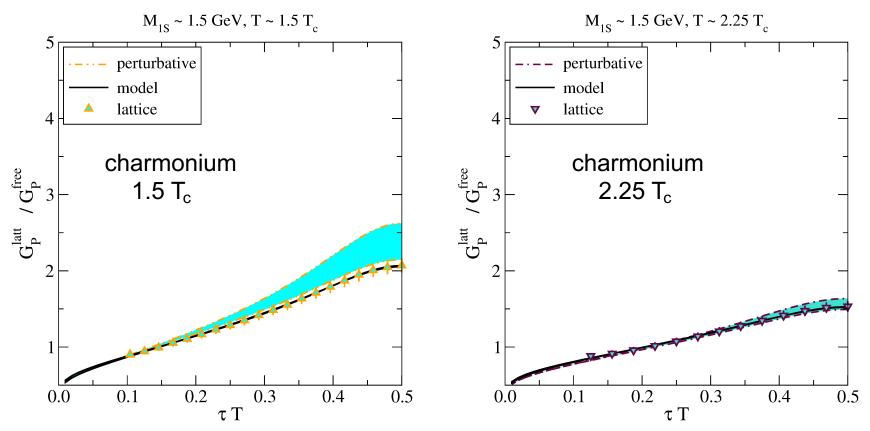
differences between lattice and perturbation theory may have a simple explanation

A: uncertainties related to the perturbative renormalization factors *B*: non-perturbative mass shifts

$$\rho_{\rm P}^{\rm model}(\omega) \equiv A \rho_{\rm P}^{\rm pert}(\omega - B) .$$

 \rightarrow continuum lattice data well described by this model with $\chi^2/d.o.f < 1$

Modelling the spectral function



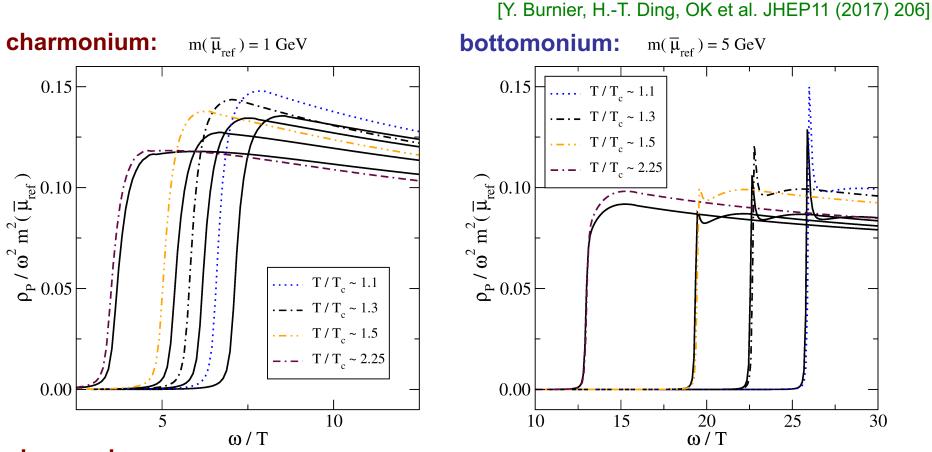
differences between lattice and perturbation theory may have a simple explanation

A: uncertainties related to the perturbative renormalization factors *B*: non-perturbative mass shifts

$$\rho_{\rm P}^{\rm model}(\omega) \equiv A \rho_{\rm P}^{\rm pert}(\omega - B) .$$

 \rightarrow continuum lattice data well described by this model with $\chi^2/d.o.f < 1$

Pseudo-scalar spectral functions



charmonium:

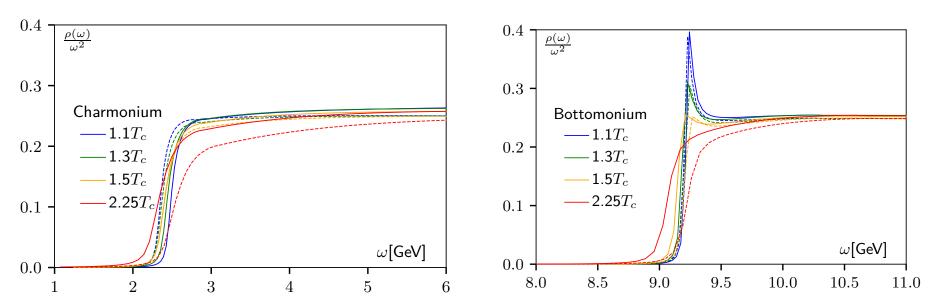
no resonance peaks are needed for representing the lattice data even for $1.1 T_c$ modest threshold enhancement sufficient in the analyzed temperature region

bottomonium:

thermally broadened resonance peak present up to temperatures around 1.5 $T_{\rm c}$

[H.T. Ding, O. Kaczmarek, A.-L. Lorenz, R. Larsen, Swagato Mukherjee, H. Ohno, H. Sandmeyer, H.-T. Shu, paper in preparation]

bottomonium:



charmonium:

charmonium:

no resonance peaks are needed for representing the lattice data even for $1.1 T_c$ modest threshold enhancement sufficient in the analyzed temperature region

bottomonium:

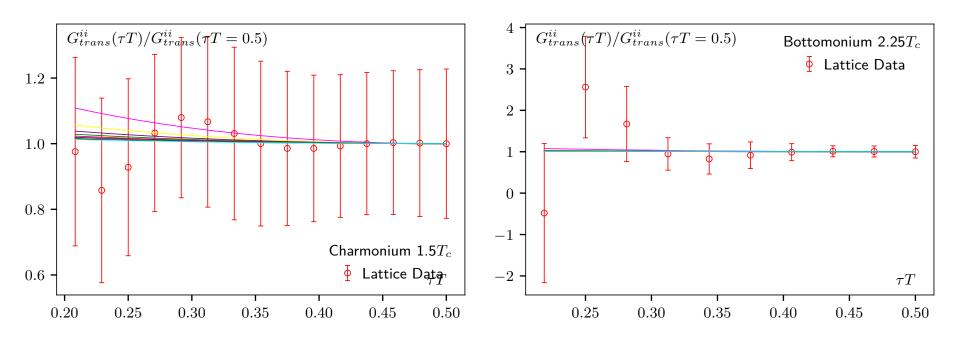
thermally broadened resonance peak present up to temperatures around 1.5 $T_{\rm c}$

Vector meson correlators - heavy quark diffusion coefficient

transport contribution in the vector channel: $\rho(\omega \ll T) \simeq 2\chi_{00} \frac{T}{M} \frac{\omega \eta}{\omega^2 + \eta^2}$, $\eta = \frac{T}{MD}$

charmonium:

bottomonium:



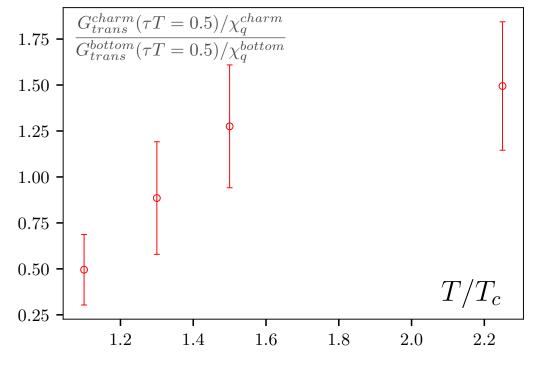
varying $2\pi DT$ between 1 and 9

- \rightarrow only small curvature due to transport contribution within our errors
- \rightarrow hard to determine transport coefficients with present data
- \rightarrow easier in the heavy quark mass limit

Vector meson correlators - heavy quark diffusion coefficient

transport contribution in the vector channel: $\rho(\omega \ll T) \simeq 2\chi_{00} \frac{T}{M} \frac{\omega \eta}{\omega^2 + \eta^2}$, $\eta = \frac{T}{MD}$

ratio of transport contributions to the correlator for charm and bottom:



 $\frac{G_{trans}^{charm}/\chi_q^{charm}/T}{G_{trans}^{bottom}/\chi_q^{bottom}/T} \approx \frac{M_{bottom}}{M_{charm}} \ \frac{\tan^{-1}(T/\eta^{charm})}{\tan^{-1}(T/\eta^{bottom})}$

using $M_{bottom}/M_{charm} \approx 3$:

$$\frac{\tan^{-1}(T/\eta^{charm})}{\tan^{-1}(T/\eta^{bottom})} < 1$$

$$\rightarrow \qquad \eta^{charm} > \eta^{bottom}$$

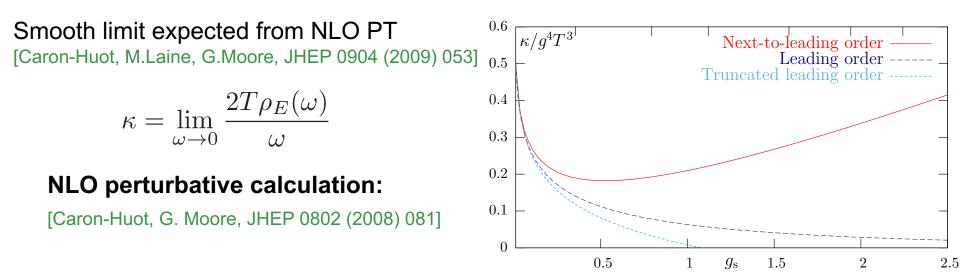
10

Heavy Quark Effective Theory (HQET) in the large quark mass limit

for a single quark in medium

leads to a (pure gluonic) "color-electric correlator"

[J.Casalderrey-Solana, D.Teaney, PRD74(2006)085012, S.Caron-Huot, M.Laine, G.D. Moore, JHEP04(2009)053]



- \rightarrow large correction towards strong interactions
- \rightarrow non-perturbative lattice methods required

 $rac{}{}$

[A.Francis, OK, M.Laine, T.Neuhaus, H.Ohno, PRD92(2015)116003]

Quenched Lattice QCD on large and fine isotropic lattices at T \simeq 1.5 T_c

- standard Wilson gauge action
- algorithmic improvements to enhance signal/noise ratio
- fixed aspect ration N_s/N_t = 4, i.e. fixed physical volume (2fm)³
- perform the continuum limit, $a{\rightarrow}~0~\leftrightarrow~N_t{\rightarrow}\infty$
- determine κ in the continuum using an Ansatz for the spectral fct. $\rho(\omega)$

- scale setting using r_0 and t_0 scale

[A.Francis,OK,M.Laine, T.Neuhaus, H.Ohno, PRD91(2015)096002]

β_0	$N_{\rm s}^3 \times N_{\tau}$	confs	$T\sqrt{t_0}^{(imp)}$	$T/T_{\rm c} _{t_0}^{\rm (imp)}$	$T\sqrt{t_0}^{(\text{clov})}$	$T/T_{\rm c} _{t_0}^{\rm (clov)}$	Tr_0	$\left.T/T_{\rm c}\right _{r_0}$
6.872	$64^3 \times 16$	172	0.3770	1.52	0.3805	1.53	1.116	1.50
7.035	$80^3 \times 20$	180	0.3693	1.48	0.3739	1.50	1.086	1.46
7.192	$96^3 \times 24$	160	0.3728	1.50	0.3790	1.52	1.089	1.46
7.544	$144^3 \times 36$	693	0.3791	1.52	0.3896	1.57	1.089	1.46
7.793	$192^3 \times 48$	223	0.3816	1.53	0.3955	1.59	1.084	1.45

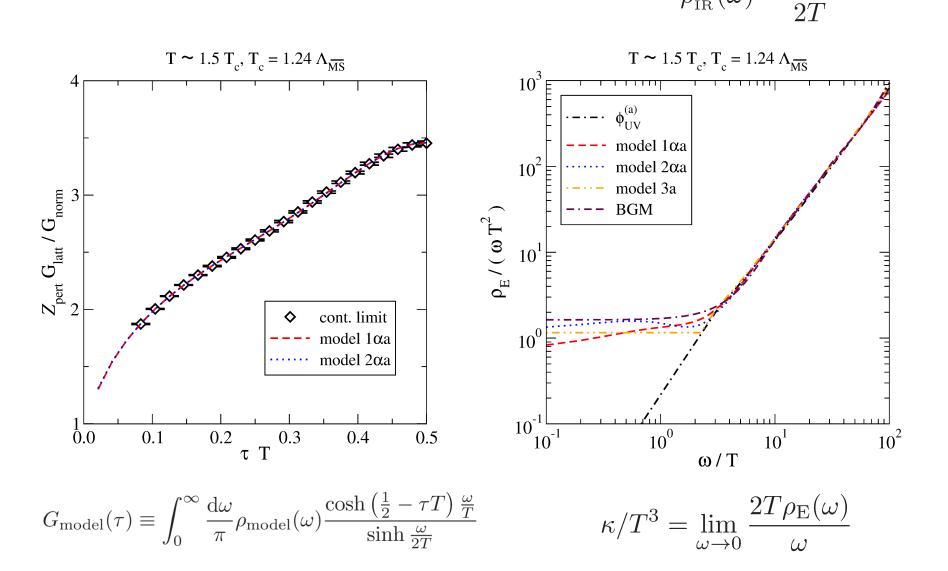
similar studies by [Banerjee,Datta,Gavai,Majumdar, PRD85(2012)014510] and [H.B.Meyer, New J.Phys.13(2011)035008]

Heavy Quark Momentum Diffusion Constant – systematic uncertainties 13

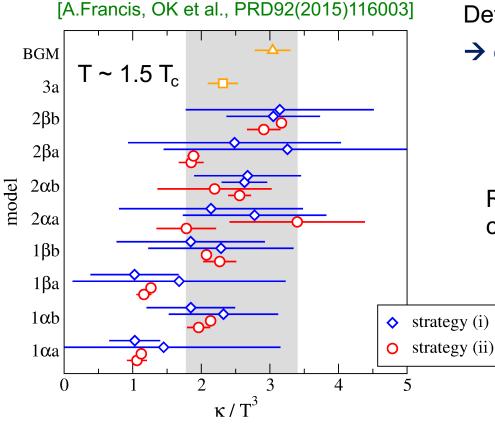
Spectral function models with correct asymptotic behavior

modeling corrections to ρ_{IR} by a power series in ω

$$\rho_{\rm uv}(\omega) = \frac{g^2(\bar{\mu}_\omega)C_F\omega^3}{6\pi}$$
$$\rho_{\rm ir}(\omega) = \frac{\kappa\omega}{2T}$$



Heavy Quark Momentum Diffusion Constant – systematic uncertainties 14



Detailed analysis of systematic uncertainties

 \rightarrow continuum estimate of κ :

$$\kappa/T^3 = \lim_{\omega \to 0} \frac{2T\rho_{\rm E}(\omega)}{\omega} = 1.8...3.4$$

Related to diffusion coefficient D and drag coefficient η_D (in the non-relativistic limit)

$$2\pi TD = 4\pi \frac{T^3}{\kappa} = 3.7...7.0$$

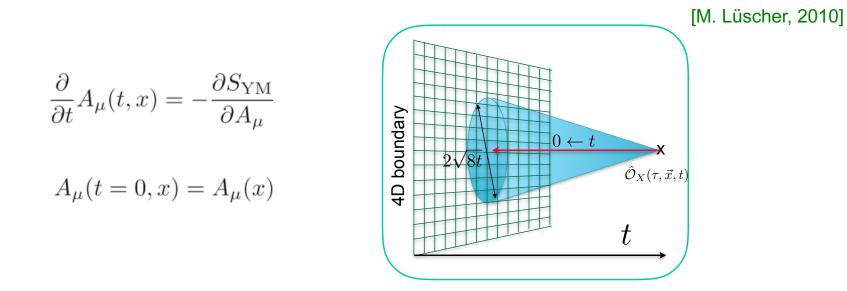
$$\eta_D = \frac{\kappa}{2M_{kin}T} \left(1 + O\left(\frac{\alpha_s^{3/2}T}{M_{kin}}\right) \right)$$

time scale associated with the kinetic equilibration of heavy quarks:

$$\tau_{\rm kin} = \frac{1}{\eta_D} = (1.8\dots 3.4) \left(\frac{T_{\rm c}}{T}\right)^2 \left(\frac{M}{1.5 \text{ GeV}}\right) \text{fm/c}$$

→ close to T_c, τ_{kin} ~ 1fm/c and therefore charm quark kinetic equilibration appears to be almost as fast as that of light partons.

Gradient flow - diffusion equation for the gauge fields along extra dimension, flow-time t



- continuous smearing of the gauge fields, effective smearing radius: $r_{
 m smear} \sim \sqrt{8t}$
- gauge fields become smooth and renormalized
- no UV divergences at finite flow-time $t \rightarrow$ operators of flowed fields are renormalized
- UV fluctuations effectively reduces \rightarrow noise reduction technique
- Applicable in quenched and full QCD

What is the flow time dependence of correlation functions? How to perform the continuum and t \rightarrow 0 limit correctly? LO perturbative limits

for the flow-time dependence:

pure SU(3) | $T \approx 1.5T_C$ | $64^3 \times 16$ | $\#_{conf} = 10000$ | imp. dist. τT $G_{EE}(t > 0)$ 0.0688 $G_{EE}(\tau T, \tau_F)$ 0.1085 $\overline{G_{EE}(t\approx 0)}$ $G_{EE}^{\,\mathrm{free}}(\tau T)$ 3.50.16171.00.22470.29150.35720.8 $3.0 \cdot$ 0.41790.45270.62.50.42.0 $\tilde{\tau}_{\rm F} = 0.001$ 0.2 $\tilde{\tau}_{\rm F} = 0.01$ 1.5 $\tilde{\tau}_{\rm F} = 0.05$ 0.0 $\tilde{\tau}_{\rm F} = 0.1$ $\tilde{\tau}_{\rm F} = 0.2$ $1.0 \cdot$ -0.2 $\tilde{\tau}_{\rm F} = 0$ $\sqrt{\tilde{\tau}_F} \equiv \sqrt{8\tau_F}T$ τT 0.00 0.02 0.04 0.06 0.08 0.10 0.120.140.160.10.20.3 0.4 0.0 0.5

 $\tilde{\tau}_f < 0.1136(\tau T)^2$

First lattice QCD results on the flow

dependence of the color-electric correlator:

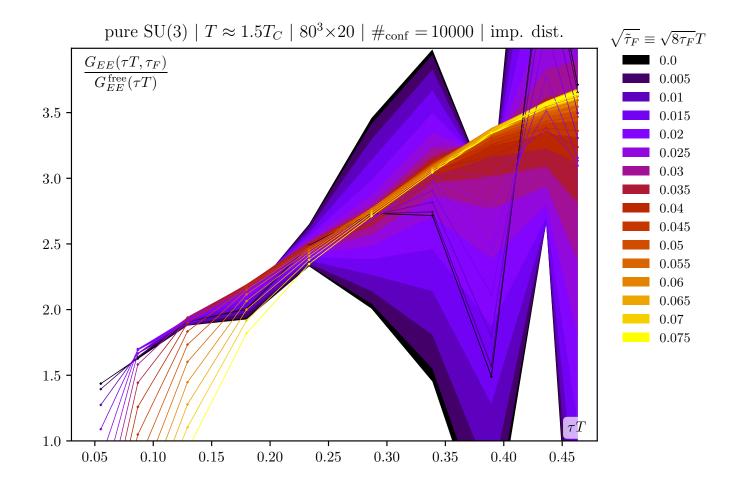
[A.M Eller, G.D. Moore, PRD97 (2018) 114507]

[L. Altenkort, H.T. Shu, OK et al., work in progress]

Effective reduction of UV fluctuations \rightarrow good noise reduction technique

Signal gets destroyed at flow times above the perturbative estimate

Linear behavior at intermediate flow times

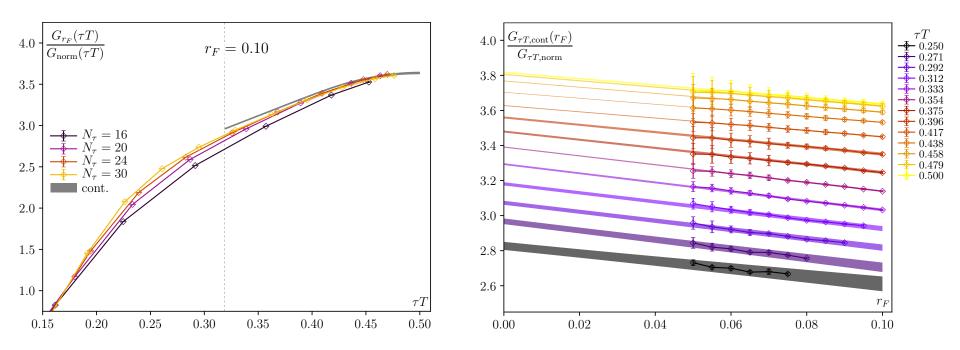


Effective reduction of UV fluctuations \rightarrow good noise reduction technique Signal gets destroyed at small distances \rightarrow large- ω part of the spectral function modified Final goal: Continuum limit at fixed physical flow time + t \rightarrow 0 limit Continuum limit, $a \rightarrow 0 (N_t \rightarrow \infty)$,

at fixed physical flow time:

Flow time limit, $t \rightarrow 0$,

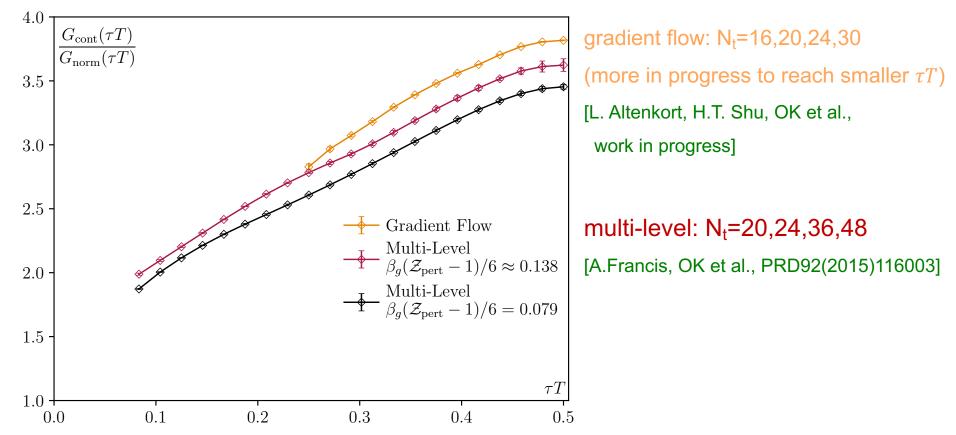
for each distance:



- \rightarrow well defined continuum and flow time extrapolation
- \rightarrow well defined renormalized correlation function

Continuum extrapolated EE-correlation function

Comparison of gradient flow and multi-level method:



Comparable τT dependence at large distances

Uncertainty in the renormalization resolved by gradient flow

Heavy quark momentum diffusion coefficient expected to be slightly larger

Extension to full QCD possible using gradient flow method

Conclusion – Disclaimer - Outlook

Well defined methodology to extract spectral and transport properties from lattice QCD

- Continuum extrapolated correlators from quenched lattice QCD are
- well described by perturbative model spectral functions down to $T\approx T_{c}$
- for observable with an external scale (mass, momentum) $\gtrsim \pi T$

All results in this talk were obtained in the quenched approximation

What may change when going to full QCD?

$$\begin{split} \Lambda_{\overline{\text{MS}}}|_{N_f=0} &\approx 255 \text{MeV} & \Lambda_{\overline{\text{MS}}}|_{N_f=3} \approx 340 \text{MeV} \\ T_c|_{N_f=0} &\approx 1.24 \Lambda_{\overline{\text{MS}}}|_{N_f=0} & T_c|_{N_f=3} \approx 0.45 \Lambda_{\overline{\text{MS}}}|_{N_f=3} \\ & \alpha_s^{EQCD}|_{T\simeq T_c} \simeq 0.2 & \alpha_s^{EQCD}|_{T\simeq T_c} > 0.3 \\ 1^{\text{st}} \text{ order deconfinement transition} & \text{chiral crossover transition} \end{split}$$

Physics may become more non-perturbative, more interesting, more complicated...

Quenched theory is a nice playground but full QCD studies crucial!

Stay tuned in the next years for the first results in full QCD...