Beauty Production with ALICE at the LHC

Deepa Thomas
for the ALICE Collaboration

Quark Matter 2019
Wuhan, China 4-9 November
Motivation

- **Beauty quarks** produced in hard scattering processes in the initial stages of the collisions, before the formation of the QGP.
 - $\tau_b \sim 0.02 < \tau_c \sim 0.07 < \tau_{\text{QGP}} \sim 0.1-1 \text{ fm/c}$
 - Production well controlled and calculable with pQCD \rightarrow **Calibrated probe.**

- Undergoes elastic (collisional) and inelastic (radiational) collisions \rightarrow **sensitive to transport properties of QGP.**

- **Lose less energy in QGP compared to light and charm quarks.**
 - Color charge effects: $\Delta E_{\text{gluons}} > \Delta E_{\text{quarks}}$ due to stronger coupling.
 - Mass effects: $M_{\text{gluons}} < M_{u,d,s} < M_c < M_b$ \rightarrow $\Delta E_{\text{gluons}} > \Delta E_{u,d,s} > \Delta E_c > \Delta E_b$

- Collectivity in QGP.

- Not created or destroyed in the medium \rightarrow **identity is preserved** in the medium, thus tagged up to hadronization.

- **pp collisions:** test pQCD calculations at LHC energies.

- **p-Pb collisions:** isolate initial state and cold nuclear matter effects.
Beauty measurements with ALICE

Central barrel coverage: $|\eta| < 0.9$
Muon spectrometer coverage: $-4 < \eta < -2.5$

Beauty measurements:
- Beauty-decay electrons ($b\to e$)
- Beauty-decay D^0 ($b\to D^0 \to K^-\pi^+$) \{non-prompt D^0\}
- Beauty-decay J/Ψ ($b\to J/\Psi \to e^+e^-$) \{non-prompt J/Ψ\}
- b-tagged jets

Inner Tracker System
- Trigger
- Primary vertex reconstruction
- Event topology
- Tracking
- PID

Time of Flight
- PID

Electromagnetic Calorimeter
- Trigger and PID

Time Projection Chamber
- Tracking and PID

VZERO
- Trigger and event topology

ZDC
- Trigger and event topology
Analysis Procedure

Beauty-decay electrons (b → e)

- Beauty hadrons have longer lifetime than charm and other electron sources.
 - Larger distance of closest approach (d_0) w.r.t primary vertex

![Graph](attachment:image.png)

- Monte-Carlo templates of b→e, c→e and other sources
 - Fitted to data to separate different sources.

beauty hadrons $\tau \sim 500 \, \mu m/c$

charm hadrons $\tau < 300 \, \mu m/c$
Analysis Procedure

Beauty-decay D⁰ (b→D⁰ (→ K⁻π⁺))

- Reconstruct b→D⁰ using invariant mass of secondary vertices displaced from primary vertex (due to longer lifetime of B decays).
- Use boosted decision trees (BDT) to optimize topological cuts
 - Enhance b→D⁰ fraction and reduce combinatorial background.
- Beauty fraction of the raw yield is obtained by template fit of the BDT cut value.

\[
\frac{d^2\sigma_{b\rightarrow D^0}}{dp_T d\eta} = \frac{f_{b\rightarrow D^0} \times N_{raw}}{\Delta p_T \Delta y BR^{D^0\rightarrow K\pi}(Acc \times \epsilon)_{b\rightarrow D^0}}
\]
Analysis Procedure

Beauty-decay J/ψ (b → J/ψ(→ e⁺e⁻))

- Reconstruct J/ψ through their decay channel J/ψ → e⁺e⁻.
- Fraction of non-prompt J/ψ (b → J/ψ) relies on pseudo-proper decay length (x) from the primary vertex.
- Perform un-binned likelihood fit of 2D distributions of invariant mass mₑₑ- and x on both signal and background.

\[
\begin{align*}
\chi &= \frac{L_p}{c m_{J/\Psi}} \\
\frac{L_p}{c m_{J/\Psi}} &= \frac{p_T}{p_T}
\end{align*}
\]

Fraction of b → J/ψ

\[
f_B = \frac{N_{h_B \rightarrow J/\Psi}}{N_{h_B \rightarrow J/\Psi} + N_{\text{prompt } J/\Psi}}
\]
Analysis Procedure

b-Tagged Jets

- Select jets containing displaced secondary vertex (SV) or minimum \(N\) tracks with large impact parameter.
- Jets reconstructed with Anti-\(k_T\) algorithm, \(R = 0.4\)
- Apply topological cuts to increase b-jet fraction
 - Method 1: Significance of the SV displacement - \(SL_{xy} = L_{xy}/\sigma_{L_{xy}} > \alpha\)
 - Method 2: Minimum no. of tracks in a jet with \(d_{xy} > d_{xy}^{\text{threshold}}\)
- Fraction of b-jets (Purity) obtained using Monte-Carlo templates fit to data.

\[
dN_{b\text{-jet}}(p_{T,jet}^{ch,reco}) = dN_{rav}(p_{T,jet}^{ch,reco}) \times \frac{P_b}{\epsilon_b} = \frac{N_b \epsilon_b}{N_b \epsilon_b + N_c \epsilon_c + N_{LF} \epsilon_{LF}}
\]

\[
\epsilon_{c,b,LF} = \text{Efficiency from MC}
\]
Results

- **pp collisions**
 - $\sqrt{s} = 5.02, 13$ TeV
 - $b \rightarrow e$ cross-section
 - $b \rightarrow D^0$ (non-prompt D^0) cross-section
 - $b \rightarrow J/\Psi$ cross-section
 - b-tagged jet cross-section

- **p-Pb collisions**
 - $\sqrt{s_{NN}} = 5.02$ TeV
 - $b \rightarrow J/\Psi$ cross-section
 - b-tagged jet cross-section
 - R_{pPb} of b-tagged jets

- **Pb-Pb collisions**
 - $\sqrt{s_{NN}} = 5.02$ TeV
 - R_{AA} of $b \rightarrow e$ (2015 data), $b \rightarrow D^0$ (2018 data)
 - v_2 of $b \rightarrow e$

*new for QM

Deepa Thomas

QM 2019
• $b\rightarrow e$ and $b\rightarrow D^0$ cross-section measured in pp at $\sqrt{s} = 5.02$ TeV
 • $b\rightarrow e$: $2 < p_T < 8$ GeV/c
 • $b\rightarrow D^0$: $1 < p_T < 24$ GeV/c

• Measurement described by FONLL calculations within uncertainties \rightarrow lie on the upper edge of FONLL.
• **b→J/Ψ cross-section measured in pp at** $\sqrt{s} = 13$ TeV for $1 < p_T < 13$ GeV/c \rightarrow **described by FONLL.**

• First ALICE measurement of b-tagged jet cross-section measured in pp at $\sqrt{s} = 5.02$ TeV for $5 < p_T < 100$ GeV/c.

• Data well described by different POWHEG +PYTHIA8 simulations within uncertainties (HVQ and Dijet).
• **b-tagged jet cross-section and** R_{pPb} **measured in p-Pb collisions at** $\sqrt{s_{NN}} = 5.02$ TeV **for** $15 < p_T < 90$ GeV/c.

• **Data well described by different POWHEG simulations within uncertainties** (HVQ and Dijet)

• **R_{pPb} consistent with unity within uncertainties in the measured p_T range.**
 • ALICE measurement consistent with CMS in the overlapping p_T range of $50 < p_T < 100$ GeV/c.
Nuclear modification factor measured for $b \rightarrow e$ in 0-10% and 30-50% Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

R_{AA} of $b \rightarrow e$

- Suppression of beauty-decay electrons observed.

- Comparison of $b \rightarrow e$ with $c,b \rightarrow e$
 - Hint of beauty quarks undergoing less energy loss than charm quarks at low p_T.
 - At high p_T: $b \rightarrow e$ and $b,c \rightarrow e$ overlap as beauty decays dominate at high p_T.

- Measurement well described by models that include both collisional and radiative energy loss.

Deepa Thomas
R_{AA} of $b \rightarrow e$

\[
R_{AA} = \frac{dN_{AA}/dp_T}{<T_{AA}> d\sigma_{pp}/dp_T}
\]

ALICE Preliminary
Pb–Pb, $\sqrt{s_{NN}} = 5.02$ TeV
30–50% centrality

\bullet R_{AA} of $b \rightarrow e$ in 30-50% Pb–Pb collisions.

\bullet Comparison of $b \rightarrow e$ with $c, b \rightarrow e$

\bullet Hint of beauty quarks undergoing less energy loss than charm quarks at low p_T.

\bullet R_{AA} (0-10%) < R_{AA} (30-50%) for $4 < p_T < 8$ GeV/c.
\[R_{AA} = \frac{dN_{AA}/dp_T}{<T_{AA}> \cdot d\sigma_{pp}/dp_T} \]

- **Nuclear modification factor measured for** \(b\to D^0 \) **in 0-10% and 30-50% Pb-Pb collisions at** \(\sqrt{s_{NN}} = 5.02 \text{ TeV} \)

 \(\rightarrow \) **Suppression of** \(b\to D^0 \) **observed.**

- **Comparison of** \(b\to D^0 \) **with prompt** \(D^0 \)

 - **Beauty quarks undergoes less energy loss than charm quarks at intermediate** \(p_T \).

- **\(R_{AA} \) (0-10%) < \(R_{AA} \) (30-50%) at intermediate** \(p_T \).
R_{AA} of $b \rightarrow D^0$

- Ratio of the R_{AA} of non-prompt to prompt D^0
 - $p_T < 5 \text{ GeV/c}$: bumpy structure \rightarrow different effects of flow and shadowing on c and b quarks affecting the kinematics?
 - $p_T > 5 \text{ GeV/c}$: beauty quarks undergo less suppression than charm quarks.

- Theoretical models that include collisional and radiational energy loss describe the data well within uncertainties.
Collective flow

\[v_2 = \langle \cos[2(\phi - \Psi_2)] \rangle \]

- **Non-zero** \(v_2 \) for \(b \to e \)
 - Significance of 3.49 \(\sigma \) for \(1.3 < p_T < 4 \) GeV/c.
$v_2 = <\cos[2(\phi - \Psi_2)]>$

v_2 vs p_T, 20-40% Pb-Pb

- **ALICE Preliminary**
- $20-40\%$ Pb-Pb, $\sqrt{s_{NN}} = 5.02$ TeV
- $b (\rightarrow c) \rightarrow e$, $|y|<0.8$

v_2 vs p_T, 5-60% Pb-Pb

- **ALICE Pb–Pb** $\sqrt{s_{NN}} = 5.02$ TeV
- $2.5 < y < 4$
- **Inclusive J/Ψ**
- **Υ(1S)**
- **Υ(1S), TAMU model**
- **Υ(1S), BBJS model**

- **Non-zero v_2 for $b\rightarrow e$**
 - Significance of 3.49 σ for $1.3 < p_T < 4$ GeV/c.
 - **Model describes the data well at high p_T.**

- **Open-beauty $v_2 > 0$, while bottomonia $v_2 \sim 0$**
 - **Y $v_2 \sim 0$ vs. p_T and collisional centralities.**
 - Impact of path-length dependent energy loss and coalescence on $b\rightarrow e$?
Summary & Conclusions

• Beauty production studied in pp, p-Pb and Pb-Pb collisions with the ALICE detector.

• pp collisions:
 • Production cross-section of b->e, b->D⁰ and b-tagged jets well described by pQCD calculations (FONLL, POWHEG).

• p-Pb collisions:
 • Production cross-section of b-tagged jets well by POWHEG simulations.
 • R_{pPb} of b-tagged jets consistent with unity.

• Pb-Pb collisions:
 • Beauty quarks undergoes energy loss \rightarrow less suppression than charm quarks at intermediate p_T.
 • Measurements described by models that include collisional and radiative energy loss.
 • Non-zero v_2 of beauty-decay electrons \rightarrow beauty $v_2 > 0$?
b→J/Ψ in p-Pb

b→J/Ψ vs p_T

- ALICE, -1.37 < y_{CMS} < 0.43 (Preliminary)
- ATLAS, -1.94 < y_{CMS} < 0 (Phys. Rev. C 92 (2015) 034904)
- FONLL + EPPS16
- EPPS16 unc.

R_{pPb} of b→J/Ψ

- ALICE, -1.37 < y_{CMS} < 0.43 (Preliminary)
- CMS, -0.9 < y_{CMS} < 0 (EPJ C 77 (2017) 269)
- FONLL + EPPS16

b→J/Ψ vs y

- ALICEx extr. unc.

- ALICE (Preliminary)
- LHCb (JHEP 02 (2014) 072)
- FONLL + EPPS16
- EPPS16 unc.

CMS, -0.9 < y_{CMS} < 0 (EPJ C 77 (2017) 269)
R_{AA} of $b \rightarrow D^0$

Models describe the data within their uncertainties.

TAMU: PLB 735 (2014) 445
MC@sHQ+EPOS2: PRC 89 (2014) 014905
LGR: arXiv:1901.04600; 1805.05807
CUJET3: arXiv:1411.3673; 1508.00552; 1804.01915; 1808.05461

Deepa Thomas
R_{AA} of $b \rightarrow D^0$

Graph 1:
- **Title:** ALICE Preliminary
- **Legend:**
 - Non-prompt D^0
 - Prompt D^0
 - CMS J/ψ from b, $|y|<2.4$ 0-10%, $l_y<0.5$
- **Data:**
 - Pb-Pb, $\sqrt{s_{NN}} = 5.02$ TeV
 - 0-10%, $|y|<0.5$

Graph 2:
- **Title:** ALICE Preliminary
- **Legend:**
 - Non-prompt D^0
 - Prompt D^0
 - CMS J/ψ from b, $|y|<2.4$ 30-100%, $l_y<0.5$
- **Data:**
 - Pb-Pb, $\sqrt{s_{NN}} = 5.02$ TeV
 - 30-50%, $|y|<0.5$

Deepa Thomas QM 2019