Multi-stage evolution of heavy quarks in the quark-gluon plasma

Gojko Vujanovic

for the JETSCAPE Collaboration

Wayne State University

Quark Matter 2019 Wuhan, Hubei, China November 5th 2019

Natural Sciences and Engineering Research Council of Canada Conseil de recherches en sciences naturelles et en génie du Canada

UNIVERSITY

JETSCAPE simulates hard & soft sectors of heavy ion collisions

- Soft hadrons: Ongoing JETSCAPE Bayesian Analysis (see talk by Jean-François Paquet) constraining the QGP transport properties.
- Hard Partons: Ongoing multi-stage energy loss of hard partons with soft QGP (see also Amit Kumar, Wed) and jet-energy deposition into QGP (see talk by Yasuki Tachibana, Tue).

 JETSCAPE Physics Working Group focused on describing interactions of hard probes with the QGP: 38 members in total (see <u>http://jetscape.org/phys/</u>)

 High→Lower Q, High E: Rapid virtuality loss through radiation (MATTER using Higher Twist)

- High→Lower Q, High E: Rapid virtuality loss through radiation (MATTER using Higher Twist)
- Low Q, High→Lower E: Scattering is important (Linear Boltzmann Transport)

- High→Lower Q, High E: Rapid virtuality loss through radiation (MATTER using Higher Twist)
- Low Q, High→Lower E: Scattering is important (Linear Boltzmann Transport)
- Low Q, Low E: Hadronization physics important (partons→Pythia for hadronization)

- High→Lower Q, High E: Rapid virtuality loss through radiation (MATTER using Higher Twist)
- Low Q, High→Lower E: Scattering is important (Linear Boltzmann Transport)
- Low Q, Low E: Hadronization physics important (partons→Pythia for hadronization)

Different physics mechanisms for in-medium energy loss in different kinematic regimes ⇒ a multi-stage approach is needed for accurate description

- MATTER (The Modular All Twist Transverse-scattering Elastic-drag and Radiation) valid for High E, High Q
 - Virtuality-ordered shower with splittings above $Q \gg Q_{\min}$
 - Splittings happen via the Sudakov form factor [Adv.Ser.Direct.HEP, 573 (1989); NPA 696, 788 (2001)] valid for all partonic processes and can include in-medium corrections

$$\Delta(Q_{\max}, Q \ge Q_{\min}) = \exp\left[-\frac{\alpha_s}{2\pi} \int_{Q^2}^{Q_{\max}^2} \frac{d(Q^2)}{Q^2} \int_{y_{\min}}^{y_{\max}} dy \,\mathcal{P}(y)\right]$$

• The limits and of the integral and the splitting(s) \mathcal{P} depend on the incoming and outgoing partons species and possible in-medium contributions.

- MATTER (The Modular All Twist Transverse-scattering Elastic-drag and Radiation) valid for High E, High Q
 - Sudakov form factor and \mathcal{P} for $Q \rightarrow Qg$ [Adv.Ser.Direct.HEP, 573 (1989); NPA 696, 788 (2001)]

$$\Delta(Q_{\max}, Q \ge Q_{\min}) = \exp\left[-\int_{Q^2}^{Q^2_{\max}} \frac{d(Q^2)}{Q^2} \frac{\alpha_s(Q^2)}{2\pi} \int_{y_{\min}}^{y_{\max}} dy \mathcal{P}(y)\right]$$

- MATTER (The Modular All Twist Transverse-scattering Elastic-drag and Radiation) valid for High E, High Q
 - Sudakov form factor and \mathcal{P} for $Q \rightarrow Qg$ [Adv.Ser.Direct.HEP, 573 (1989); NPA 696, 788 (2001)]

$$\Delta(Q_{\max}, Q \ge Q_{\min}) = \exp\left[-\int_{Q^2}^{Q_{\max}^2} \frac{d(Q^2)}{Q^2} \frac{\alpha_s(Q^2)}{2\pi} \int_{y_{\min}}^{y_{\max}} dy \,\mathcal{P}(y)\right]$$

- Q_{\max} is set by hard cross section momentum exchange
- Emission Kinematics dictates that:

$$Q_{\min}^{2} = \frac{Q_{0}^{2}}{2} \left[1 + \sqrt{1 + \frac{4M^{2}}{Q_{0}^{2}}} \right] \qquad \qquad y_{\min} = \frac{Q_{0}^{2}}{2Q^{2}} + \frac{M^{2}}{M^{2} + Q^{2}} \qquad \qquad y_{\max} = 1 - \frac{Q_{0}^{2}}{2Q^{2}}$$

- MATTER (The Modular All Twist Transverse-scattering Elastic-drag and Radiation) valid for High E, High Q
 - Sudakov form factor and \mathcal{P} for $Q \rightarrow Qg$ [Adv.Ser.Direct.HEP, 573 (1989); NPA 696, 788 (2001)]

$$\Delta(Q_{\max}, Q \ge Q_{\min}) = \exp\left[-\int_{Q^2}^{Q_{\max}^2} \frac{d(Q^2)}{Q^2} \frac{\alpha_s(Q^2)}{2\pi} \int_{y_{\min}}^{y_{\max}} dy \,\mathcal{P}(y)\right]$$

- Q_{\max} is set by hard cross section momentum exchange
- Emission Kinematics dictates that:

$$Q_{\min}^{2} = \frac{Q_{0}^{2}}{2} \left[1 + \sqrt{1 + \frac{4M^{2}}{Q_{0}^{2}}} \right] \qquad \qquad y_{\min} = \frac{Q_{0}^{2}}{2Q^{2}} + \frac{M^{2}}{M^{2} + Q^{2}} \qquad \qquad y_{\max} = 1 - \frac{Q_{0}^{2}}{2Q^{2}}$$

10

- MATTER (The Modular All Twist Transverse-scattering Elastic-drag and Radiation) valid for High E, High Q
 - Sudakov form factor and \mathcal{P} for $Q \rightarrow Qg$ [Adv.Ser.Direct.HEP, 573 (1989); NPA 696, 788 (2001)]

$$\Delta(Q_{\max}, Q \ge Q_{\min}) = \exp\left[-\int_{Q^2}^{Q_{\max}^2} \frac{d(Q^2)}{Q^2} \frac{\alpha_s(Q^2)}{2\pi} \int_{y_{\min}}^{y_{\max}} dy \,\mathcal{P}(y)\right]$$

- Q_{\max} is set by hard cross section momentum exchange
- Emission Kinematics dictates that:

$$Q_{\min}^{2} = \frac{Q_{0}^{2}}{2} \left[1 + \sqrt{1 + \frac{4M^{2}}{Q_{0}^{2}}} \right] \qquad \qquad y_{\min} = \frac{Q_{0}^{2}}{2Q^{2}} + \frac{M^{2}}{M^{2} + Q^{2}} \qquad \qquad y_{\max} = 1 - \frac{Q_{0}^{2}}{2Q^{2}}$$

• $\mathcal{P}(y)$: vacuum/medium splitting derived via SCET [**PRC 94, 054902 (2016)**] at LO in $\left(\alpha_{s}, \frac{M^{2}}{Q^{2}}\right)$ $\mathcal{P}(y) = P(y) + \frac{P(y)\left[\left\{\left(1 - \frac{y}{2}\right) - \chi + \left(1 - \frac{y}{2}\right)\chi^{2}\right\}\left\{\int_{\tau_{i}}^{\tau_{f}} dt \,\hat{q}(t)\left[4\sin^{2}\left[\frac{t - \tau_{i}}{2\tau_{f}}\right]\right]\right\} + \hat{e}\xi...\} + \hat{e}_{2}\{\ldots\}\right]}{y(1 - y)Q^{2}(1 + \chi)^{2}}$ $\chi = \frac{y^{2}M^{2}}{y(1 - y)Q^{2} - y^{2}M^{2}}$ $\hat{q} \propto \alpha_{s}^{2}T^{3} \ln\left[\frac{cE}{\alpha_{s}T}\right]$

11

- MATTER (The Modular All Twist Transverse-scattering Elastic-drag and Radiation) valid for High E, High Q
 - Sudakov form factor and \mathcal{P} for $g \rightarrow \overline{Q}Q$ [Adv.Ser.Direct.HEP, 573 (1989); NPA 696, 788 (2001)]

$$\Delta(Q_{\max}, Q \ge Q_{\min}) = \exp\left[-\int_{Q^2}^{Q_{\max}^2} \frac{d(Q^2)}{Q^2} \frac{\alpha_s(Q^2)}{2\pi} \int_{y_{\min}}^{y_{\max}} dy \mathcal{P}(y)\right]$$

- MATTER (The Modular All Twist Transverse-scattering Elastic-drag and Radiation) valid for High E, High Q
 - Sudakov form factor and \mathcal{P} for $g \rightarrow \overline{Q}Q$ [Adv.Ser.Direct.HEP, 573 (1989); NPA 696, 788 (2001)]

$$\Delta(Q_{\max}, Q \ge Q_{\min}) = \exp\left[-\int_{Q^2}^{Q_{\max}^2} \frac{d(Q^2)}{Q^2} \frac{\alpha_s(Q^2)}{2\pi} \int_{\mathcal{Y}_{\min}}^{\mathcal{Y}_{\max}} dy \,\mathcal{P}(y)\right]$$

- Q_{\max} is set by hard cross section momentum exchange
- Emission Kinematics dictate that:

$$y_{\min}^2 = Q_0^2 + 2M^2$$
 $y_{\min} = \frac{Q_0^2}{2Q^2} + \frac{M^2}{Q^2}$ $y_{\max} = 1 - \frac{Q_0^2}{2Q^2}$

- MATTER (The Modular All Twist Transverse-scattering Elastic-drag and Radiation) valid for High E, High Q
 - Sudakov form factor and \mathcal{P} for $g \rightarrow \overline{Q}Q$ [Adv.Ser.Direct.HEP, 573 (1989); NPA 696, 788 (2001)]

$$\Delta(Q_{\max}, Q \ge Q_{\min}) = \exp\left[-\int_{Q^2}^{Q_{\max}^2} \frac{d(Q^2)}{Q^2} \frac{\alpha_s(Q^2)}{2\pi} \int_{y_{\min}}^{y_{\max}} dy \,\mathcal{P}(y)\right]$$

- $Q_{\rm max}$ is set by hard cross section momentum exchange
- **Emission Kinematics dictate that:**

$$y_{\min}^2 = Q_0^2 + 2M^2$$
 $y_{\min} = \frac{Q_0^2}{2Q^2} + \frac{M^2}{Q^2}$ $y_{\max} = 1 - \frac{Q_0^2}{2Q^2}$

• $\mathcal{P}(y)$ not yet derived using SCET for heavy flavor, so the light flavor prescription at LO in $\left(\alpha_{s}, \frac{1}{\alpha^{2}}\right)$ is used as ansatz $\mathcal{P}(\mathbf{y}) = P(\mathbf{y}) + \frac{P(\mathbf{y}) \int_{\tau_i}^{\tau_f} dt \,\hat{q}(t) 4\sin^2\left[\frac{t-\tau_i}{2\tau_f}\right]}{y(1-y)Q^2}$ $\hat{q} \propto \alpha_s^2 T^3 \ln\left[\frac{cE}{\alpha_s T}\right]$

Linear Boltzmann Transport for Heavy Quarks

- Valid for high E, assuming particles are on-shell
- Solves the time-ordered evolution for the phase space distribution function

 $p \cdot \partial f(x, p) = \mathcal{C}_{el} + \mathcal{G}_{inel}$

Linear Boltzmann Transport for Heavy Quarks

- Valid for high E, assuming particles are on-shell
- Solves the time-ordered evolution for the phase space distribution function

 $p \cdot \partial f(x, p) = \mathcal{C}_{el} + \mathcal{G}_{inel}$

• The LO pQCD 2 \leftrightarrow 2 scattering is included in \mathcal{C}_{el}

$$\mathcal{C}_{el} = \int \frac{d^3k}{2k^0(2\pi)^3} \int \frac{d^3l}{2l^0(2\pi)^3} \int \frac{d^3q}{2q^0(2\pi)^3} f(p)f(k) |\mathcal{M}|^2 f'(l)f'(q)(2\pi)^4 \delta^{(4)}(p+k-l-q)$$

Linear Boltzmann Transport for Heavy Quarks

- Valid for high E, assuming particles are on-shell
- Solves the time-ordered evolution for the phase space distribution function

 $p \cdot \partial f(x, p) = \mathcal{C}_{el} + \mathcal{G}_{inel}$

• The LO pQCD 2 \leftrightarrow 2 scattering is included in \mathcal{C}_{el}

$$\mathcal{C}_{el} = \int \frac{d^3k}{2k^0(2\pi)^3} \int \frac{d^3l}{2l^0(2\pi)^3} \int \frac{d^3q}{2q^0(2\pi)^3} f(p)f(k) |\mathcal{M}|^2 f'(l)f'(q)(2\pi)^4 \delta^{(4)}(p+k-l-q)$$

• The G_{inel} calculates medium-induced stimulated $1 \rightarrow 2$ emission at LO in $\left(\alpha_s, \frac{M^2}{Q^2}\right)$ [see **PRC 94, 054902 (2016)**]

$$\begin{aligned} \mathcal{G}_{inel} &= \int \frac{d(Q^2)}{Q^2} \frac{\alpha_s(Q^2)}{2\pi} \int dy \,\mathcal{P}(y) \\ \mathcal{P}(y) &= P(y) + \frac{P(y) \left[\left\{ \left(1 - \frac{y}{2}\right) - \chi + \left(1 - \frac{y}{2}\right)\chi^2 \right\} \left\{ \int_{\tau_i}^{\tau_f} dt \,\hat{q}(t) \left[4\sin^2 \left[\frac{t - \tau_i}{2\tau_f} \right] \right] \right\} + \hat{e}_{1} \left\{ \dots \right\} + \hat{e}_{2} \left\{ \dots \right\} \right] \\ \mathcal{P}(y) &= P(y) + \frac{P(y) \left[\left\{ \left(1 - \frac{y}{2}\right) - \chi + \left(1 - \frac{y}{2}\right)\chi^2 \right\} \left\{ \int_{\tau_i}^{\tau_f} dt \,\hat{q}(t) \left[4\sin^2 \left[\frac{t - \tau_i}{2\tau_f} \right] \right] \right\} + \hat{e}_{2} \left\{ \dots \right\} \right] \\ \mathcal{P}(y) &= P(y) + \frac{P(y) \left[\left\{ \left(1 - \frac{y}{2}\right) - \chi + \left(1 - \frac{y}{2}\right)\chi^2 \right\} \left\{ \int_{\tau_i}^{\tau_f} dt \,\hat{q}(t) \left[4\sin^2 \left[\frac{t - \tau_i}{2\tau_f} \right] \right] \right\} + \hat{e}_{2} \left\{ \dots \right\} \right\} \right] \\ \mathcal{P}(y) &= P(y) + \frac{P(y) \left[\left\{ \left(1 - \frac{y}{2}\right) - \chi + \left(1 - \frac{y}{2}\right)\chi^2 \right\} \left\{ \int_{\tau_i}^{\tau_f} dt \,\hat{q}(t) \left[4\sin^2 \left[\frac{t - \tau_i}{2\tau_f} \right] \right] \right\} + \hat{e}_{2} \left\{ \dots \right\} \right\} \right] \\ \mathcal{P}(y) &= P(y) + \frac{P(y) \left[\left\{ \left(1 - \frac{y}{2}\right) - \chi + \left(1 - \frac{y}{2}\right)\chi^2 \right\} \left\{ \int_{\tau_i}^{\tau_f} dt \,\hat{q}(t) \left[4\sin^2 \left[\frac{t - \tau_i}{2\tau_f} \right] \right] \right\} \right\} + \hat{e}_{2} \left\{ \dots \right\} \right\} \right] \\ \mathcal{P}(y) &= P(y) + \frac{P(y) \left[\left\{ \left(1 - \frac{y}{2}\right) - \chi + \left(1 - \frac{y}{2}\right)\chi^2 \right\} \left\{ \int_{\tau_i}^{\tau_f} dt \,\hat{q}(t) \left[4\sin^2 \left[\frac{t - \tau_i}{2\tau_f} \right] \right] \right\} \right\} \right\} \\ \mathcal{P}(y) &= P(y) + \frac{P(y) \left[\left\{ \left(1 - \frac{y}{2}\right) - \chi + \left(1 - \frac{y}{2}\right)\chi^2 \right\} \left\{ \int_{\tau_i}^{\tau_f} dt \,\hat{q}(t) \left[4\sin^2 \left[\frac{t - \tau_i}{2\tau_f} \right] \right] \right\} \right\} \right\} \\ \mathcal{P}(y) &= P(y) + \frac{P(y) \left[\left\{ \left(1 - \frac{y}{2}\right) - \chi + \left(1 - \frac{y}{2}\right)\chi^2 \right\} \right\} \right] \\ \mathcal{P}(y) &= P(y) + \frac{P(y) \left[\left\{ \left(1 - \frac{y}{2}\right) - \chi + \left(1 - \frac{y}{2}\right)\chi^2 \right\} \right\} \right\} \right\}$$

About the QGP medium simulations

 Using "best fit" to hadronic observables [Bernhard et al. NPA 967 67 (2017); 1804.06469] JETSCAPE Simulations group generated e-by-e QGP evolution profiles

About the QGP medium simulations

- Using "best fit" to hadronic observables [Bernhard et al. NPA 967 67 (2017); 1804.06469] JETSCAPE Simulations group generated e-by-e QGP evolution profiles
- Event-by-event simulations consist of
 - TRENTO initial conditions
 - 2+1D Pre-equilibrium dynamics (free-streaming)
 - 2+1D 2nd order dissipative hydrodynamics of QGP

About the QGP medium simulations

- Using "best fit" to hadronic observables [Bernhard et al. NPA 967 67 (2017); 1804.06469] JETSCAPE Simulations group generated e-by-e QGP evolution profiles
- Event-by-event simulations consist of
 - TRENTO initial conditions
 - 2+1D Pre-equilibrium dynamics (free-streaming)
 - 2+1D 2nd order dissipative hydrodynamics of QGP
- The same underlying QGP simulation is used to study
 - Light flavor high- p_T hadrons and jets (see talk by **Amit Kumar, Wed**)
 - Jet-medium interactions (see talk by Yasuki Tachibana, Tue)
 - Heavy flavor interactions with the QGP (this talk)

- Jet and charged hadron R_{AA} used to tune parameters, i.e. $\alpha_s = 0.25$ and $Q_s = 2GeV$ (for more details see talk by **Amit Kumar**)
- No additional tuning was done for D^0 meson R_{AA}

D^0 mesons R_{AA} vs CMS data from PbPb at $\sqrt{s_{NN}} = 5.02 \ TeV$

• MATTER alone has few scatterings with the QGP before Pythia hadronization $\Rightarrow R_{AA}$ close to 0.5

D^0 mesons R_{AA} vs CMS data from PbPb at $\sqrt{s_{NN}} = 5.02 \ TeV$

- MATTER alone has few scatterings with the QGP before Pythia hadronization $\Rightarrow R_{AA}$ close to 0.5
- MATTER +LBT has many scatterings with the QGP, owing to LBT, before Pythia hadronization
 - \Rightarrow R_{AA} can go much closer to 0.1

D^0 mesons R_{AA} vs CMS data from PbPb at $\sqrt{s_{NN}} = 5.02 \ TeV$

- MATTER alone has few scatterings with the QGP before Pythia hadronization $\Rightarrow R_{AA}$ close to 0.5
- MATTER +LBT has many scatterings with the QGP, owing to LBT, before Pythia hadronization
 - $\Rightarrow R_{AA}$ can go much closer to 0.1
- Using a multi-scale approach allows to balance the contributions from few vs multiple scattering, and ultimately gives an improved description of R_{AA}

Conclusion and outlook

- A multi-scale formalism, such as that present inside the JETSCAPE framework, allows for an improved description of D^0 energy loss inside QGP, because the effects of multiple vs few scatterings is included.
- Furthermore, JETSCAPE provides a unified framework where these formalisms can be combined, which allows for a simultaneous description of both light and heavy parton energy loss.
- Future studies will explore:
 - Open bottom hadron *R*_{AA}
 - the effects of additional transport coefficients relevant for heavy flavor production, i.e. longitudinal drag (\hat{e}) and diffusion (\hat{e}_2) coefficients.