Longitudinal dependence of B and D mesons nuclear modification factor in relativistic heavy ion collisions

Caio A. G. Prado (开友)
with Wen-Jing Xing, Shanshan Cao, Guang-You Qin, Xin-Nian Wang

28th International Conference on Ultra-relativistic Nucleus-Nucleus Collisions
Outline

Introduction

Monte-Carlo simulation

Results

Summary
Heavy quarks in heavy ion collisions

- **Heavy Ion Collisions**
 - Experimental assessment of nuclear matter
 - Properties of the Quark Gluon Plasma

- **The case for heavy flavor**:
 - Pre-equilibrium production (hard scattering)
 - Long relaxation times
 - \(m_Q > A_{qcd} \Rightarrow pQCD \) calculations
 - Strongly affected by QGP
 - Weakly affected by late time evolution
 - Hard fragmentation

- **Nuclear modification factor**:

 \[
 R_{AA}(p_T, y) = \frac{1}{N} \frac{dN_{AA}/dp_T}{dN_{pp}/dp_T} dy,
 \]
Simultaneous description between R_{AA} and v_2?

Multiple models with different physics seems to only qualitatively describe the data

How can we further constraint the models to better understand what’s really going on?

One alternative: bet on new observables not very well explored yet (higher order harmonics, event shape engineering, soft-heavy correlations, longitudinal dependence, ...)
Introduction
Exploring the longitudinal dependence

- So far longitudinal dependence of observables are still in development;
- The medium dynamics can be very different at large rapidity: temperature, size, ...
- Is it possible to discriminate similar models on an analysis of the large rapidity spectra?
Monte-Carlo simulation

General framework

- Coding of the simulation:
 - C++/Fortran, ROOT and PYTHIA
 - Modular programming (QCD factorization)
 - Freedom in executing different hydro backgrounds.

- Transport model
 - Relativistic Langevin equation: \[\frac{dp}{dt} = -\eta_D(p)p + \xi + f_g \]
 - Classic fluctuation-dissipation relation with \(D(2\pi T) = 7 \)
 - \(f_g \): recoil due to gluon emission.

- Hadronization
 - Hybrid fragmentation plus coalescence:
 - \(T_c = 165 \) MeV.
 - No re-scattering in the final hadronic phase.

- Heavy quarks probes:
 - Sampled at the beginning of the simulation
 - No medium response is implemented.
Monte-Carlo simulation

Initial Conditions and Hydrodynamics

- Input of the program;
- 3D profiles for the hydro:
 - Energy density;
 - Temperature;
 - Transverse velocity;
 - Longitudinal velocity;
- Trento initial conditions (IP-Glasma);
- Quarks position given by Glauber Model;
 - Initial momentum distribution given by \(p_{\text{QCD}}(\text{LO}) \).
- Viscous average 3D+1 hydrodynamics: \(\text{CLVisc} \)
 - \(\eta/s = 0.15 \);
 - \(T_{t_0} = 165 \text{ MeV} \);
 - \(\tau_0 = 0.6 \text{ fm/c} \);
 - s95p-pce EoS.
Heavy quark density distribution

Initial position

$|\eta| \leq 1.0$
$1.0 \leq |\eta| \leq 2.5$
$2.5 \leq |\eta| \leq 4.0$

Final position

$|\eta| \leq 1.0$
$1.0 \leq |\eta| \leq 2.5$
$2.5 \leq |\eta| \leq 4.0$

Initial position

$|\eta| \leq 1.0$
$1.0 \leq |\eta| \leq 2.5$
$2.5 \leq |\eta| \leq 4.0$

Final position

$|\eta| \leq 1.0$
$1.0 \leq |\eta| \leq 2.5$
$2.5 \leq |\eta| \leq 4.0$
Production spectra reaches lower p_T with large rapidity.
Nuclear modification factor

- Good agreement with CMS experimental data for D^0
- Behavior dominated by the steeper yield spectra
- Low p_T regime involves much complicated physics
Results

Nuclear modification factor

- Good agreement with CMS data for D mesons
- Data from ALICE disagrees with CMS
- Behavior similar to that of $\sqrt{s_{NN}} = 5.02$ TeV collision
Agreement with data only on the higher p_T regime

Due to lower collision energy, large rapidity is limited on p_T
Simulation results matches both electrons and muons data.

Larger p_T range of experimental data allows for more clearer separation in rapidity.

In the low p_T regime, simulation underestimates the data.
For large p_T we observe good agreement with data for both electrons and muons

Experimental error bars cover all the three curves for muon

In the low p_T regime, simulation still underestimates the data
Results

Nuclear modification factor

- Good agreement with data for electrons despite the previous D meson results
- Overall behavior from B and D is propagated to electrons
With increasing rapidity, R_{AA} tends to decrease

- Interplay between medium and production spectra
- Production spectra prevails and generates more suppression
Summary

- Longitudinal dependence of R_{AA} of charm quarks and D mesons:
 - Interplay between heavy flavor production spectra and medium size compete at large rapidity
 - Production spectra dominates R_{AA} results at large rapidity
 - Nuclear modification factor becomes flat with p_T at large rapidity
 - Different behavior depending on p_T regime
 - Further exploring the large rapidity regime might be able to provide further constraints on phenomenological models

- Future prospects:
 - Include comparison for other transport models
 - Study elliptic azimuthal anisotropy for heavy mesons
 - Event-by-event computations.