Nuclear modification factors, directed and elliptic flow of electrons from open heavy-flavor decays in Au+Au collisions from STAR

Matthew Kelsey for the STAR Collaboration

Lawrence Berkeley National Laboratory
Heavy-Flavor quarks in the QGP

- Precise measurements of HF hadron production essential for understanding non-perturbative regime of hot QCD
- Measurements of charm R_{AA} and v_2 similar to light-hadrons in $\sqrt{s_{NN}} = 200$ GeV Au+Au collisions

 \Rightarrow Bottom quark ultimate HF probe of QGP at RHIC

\[m_{c,b} >> \Lambda_{QCD} \]
\[m_{c,b} >> T_{QGP} \]
\[\tau_{\text{relaxation}} \approx \tau_{\text{QGP}} \]
Electrons at STAR

- **Time Projection Chamber**
 - Full 2π azimuthal coverage at mid-rapidity

- **Heavy Flavor Tracker in 2014+2016 data**
 - First application of thin MAPS detector in collider experiment
 - Excellent pointing resolution for HF vertex and displaced daughter reconstruction

Good electron PID at mid-rapidity
- Ionization energy loss in TPC (dE/dx)
- $1/\beta$ from Time-Of-Flight detector
- Energy deposition in Barrel EM Calorimeter (p/Energy)

Figures
- Tracking
- Phys. Rev. C 99, 034908

0-80% Au+Au $\sqrt{s_{NN}}=200$ GeV
Outline of measurements

• Nuclear modification factors of charm and bottom electrons in √s_{NN} = 200 GeV Au+Au collisions
• Charm electron directed flow in √s_{NN} = 200 GeV Au+Au collisions
• Charm and bottom electron elliptic flow in √s_{NN} = 200 GeV Au+Au collisions
• Inclusive HF electron elliptic flow in √s_{NN} = 54.4 GeV Au+Au collisions

With HFT
NPE @ 200 GeV with HFT

Combined 2014+2016 RHIC Runs

- 2014: ~0.9 B minimum bias + ~0.2 nb\(^{-1}\) BEMC triggered events
- 2016: ~1.1 B minimum bias + ~1.2 nb\(^{-1}\) BEMC triggered events
Extraction of b- and c-decayed electrons with template fit to log of 3D Distance of Closest Approach

- Larger τ of b-hadrons w.r.t. c-hadrons
 - $\langle DCA(b \rightarrow e) \rangle > \langle DCA(c \rightarrow e) \rangle$

- Large separation from backgrounds (hadrons and photonic electrons)

Combined 2014+2016 RHIC Runs
- 2014: ~0.9 B minimum bias + ~0.2 nb$^{-1}$ BEMC triggered events
- 2016: ~1.1 B minimum bias + ~1.2 nb$^{-1}$ BEMC triggered events

STAR Preliminary
Au+Au $\sqrt{s_{NN}} = 200$ GeV
0-80%
Combined 2014+2016 RHIC Runs

- 2014: ~0.9 B minimum bias + ~0.2 nb\(^{-1}\) BEMC triggered events
- 2016: ~1.1 B minimum bias + ~1.2 nb\(^{-1}\) BEMC triggered events

Hadron background reduced with Likelihood MVA PID

Photonic electron background rejection with single electron isolation cuts

See Yingjie Zhou’s poster (HF32) for details!

- Large separation from backgrounds (hadrons and photonic electrons)

Events / (0.04 GeV)

- \(p_T \in [3.5,4.5] \) GeV/c
- STAR Preliminary
- Au+Au \(\sqrt{s_{NN}} = 200 \) GeV
- 0-80%

DCA/cm

- \(\log_{10}(DCA/cm) \)}
Bottom Electron Fraction

- Bottom fraction in MB Au+Au enhanced compared to p+p measurement and FONLL prediction
 - p+p from combined STAR 2006 published and 2012 preliminary data

- Bottom fraction significantly enhanced in central collisions
 - Bottom fraction in peripheral collisions consistent with p+p data

STAR Preliminary 0-80%

\[\frac{N(b \rightarrow e)}{N(b+c \rightarrow e)} \] as a function of \(p_T \) (GeV/c)

- STAR preliminary
- Au+Au \(\sqrt{s_{NN}} = 200 \) GeV
- FONLL

See Yingjie Zhou’s poster (HF32) for details!
Nuclear Modification Factors

Bottom electron fraction translated to $b,c\rightarrow e$ R_{AA} with preliminary STAR inclusive NPE R_{AA}

$R_{AA}^{b\rightarrow e} = \frac{f_{b}^{AA}}{f_{b}^{pp}} R_{AA}^{NPE}$

$R_{AA}^{c\rightarrow e} = \frac{1 - f_{b}^{AA}}{1 - f_{b}^{pp}} R_{AA}^{NPE}$

- Increased precision from QM2017 preliminary
 - Increased statistics with 2014+2016 data
 - Reduced backgrounds from MVA PID and photonic electron rejection
 - Increased sensitivity to HF electrons with log(DCA) fit

Const. fit = 1.92 ± 0.25(stat.)±0.21(syst.)

$R_{AA}(b\rightarrow e) > R_{AA}(c\rightarrow e)$ significant at $\sim 3\sigma$
Nuclear Modification Factors

Bottom electron fraction translated to $b,c\rightarrow e$ R_{AA}
with preliminary STAR inclusive NPE R_{AA}

$$R_{AA}^{b\rightarrow e} = \frac{f_{b}^{AA}}{f_{b}^{pp}} R_{AA}^{NPE}$$

$$R_{AA}^{c\rightarrow e} = \frac{1 - f_{b}^{AA}}{1 - f_{b}^{pp}} R_{AA}^{NPE}$$

- Data consistent with DUKE Langevin model prediction (consistent with $\Delta E(b) < \Delta E(c)$)
- Null hypothesis [$R_{AA}(B) = R_{AA}(D)$] for $p_T(e) \in [2.5,5.5]$ GeV/c:
 - $\chi^2/\text{ndof} = 8.6/2$, p-value = .014

See Yingjie Zhou’s poster (HF32) for details!
Double Ratio of R_{CP}

- Calculated from centrality dependent bottom fraction
- Large cancelation of correlated systematic uncertainties

⇒ Constant fit to double ratio >1 significant at 3.5σ and 4.4σ for $R_{CP}(0\text{-}20\%/40\text{-}80\%)$ and $R_{CP}(0\text{-}20\%/20\text{-}40\%)$

See Yingjie Zhou’s poster (HF32) for details!
Anisotropic Flow Strategy

- HFT enables study of v_1 and v_2 in log(DCA) regions rich with charm and bottom electrons and with little backgrounds
- Observed flow corrected for flow from background

$$v_2(\text{obs.}) = f_b v_2^b + f_c v_2^c + f_{bkg} v_2^{bkg}$$
Charm→e Directed Flow

Background $\langle p_T \rangle \sim 1.5 \text{ GeV}/c$

$\Rightarrow v_1(\text{hadron}) \sim 0$

$v_1(\text{obs.}) = f_c v_1^c$
Charm→e Directed Flow

- Charm-decayed electron dv_1/dy non-zero $\sim 5\sigma$ level
 - $\langle p_T(D) \rangle = 2.5$ GeV/c for electron $p_T > 1.2$ GeV/c
 - Magnitude consistent with STAR D^0 measurement ($\langle p_T(D^0) \rangle = 2.2$ GeV/c)

$v_1(\text{obs.}) = f_c v_1^c$

D^0 points shifted from bin center

$\langle p_T(D) \rangle = 0.051 \pm 0.009$(stat.$) \pm 0.005$(syst.$)$

D^0 points shifted from bin center

D^0 v_1: Phys. Rev. Lett. 123, 162301
Charm→e Directed Flow

- Initial EM field predicted to alter $c/\bar{c} v_1$ oppositely
- Electron charge tags parent hadron flavor allowing $c/\bar{c} v_1$ probe
 - $e^+(\bar{c}) - e^-(\bar{c}) v_1$ difference at $<1\sigma$

$\nu_1 (obs.) = f_c v_1^c$

D^0 vs. Rapidty

$e^+ dv/dy = -0.059\pm0.013$(stat.$)\pm0.004$(syst.)
$e^- dv/dy = -0.044\pm0.013$(stat.$)\pm0.006$(syst.)

D^0 vs. Rapidty

$10-80\%$ Au+Au

$0-80\%$ Au+Au

e^\pm points shifted from bin center
Charm→e Elliptic Flow

- Second order event plane measured with TPC tracks using η-sub event method
- Simultaneous fit to two log(DCA) regions; solve for $v_2(c\rightarrow e)$
Charm → e Elliptic Flow

• Non-flow estimated with two-particle (e-h) correlations in PYTHIA

• Measured D^0v_2 folded to decayed electron with simulated semileptonic decays in EvtGen

\Rightarrow Charm electron v_2 consistent with folded D^0v_2 and DUKE model

$\nu_2^{I}(\text{obs.}) = f_b^{I}v_2^b + f_c^{I}v_2^c + f_{bkg}^{I}v_2^{bkg}$

$\nu_2^{II}(\text{obs.}) = f_b^{II}v_2^b + f_c^{II}v_2^c + f_{bkg}^{II}v_2^{bkg}$
Bottom→e Elliptic Flow

\[v_2(\text{obs.}) = f_b v_2^b + f_c v_2^c + f_{bkg} v_2^{bkg} \]
Bottom→e Elliptic Flow

- Non-flow estimated from two particle correlations (e-h) in PYTHIA
- Data qualitatively consistent with Duke model considering non-flow

\[v_2(\text{obs.}) = f_b v_2^b + f_c v_2^c + f_{bkg} v_2^{bkg} \]

DUKE: Phys. Rev. C 92, 024907
Private Communication
Bottom→e Elliptic Flow

- **Forward Meson Spectrometer** (2.5<\(\eta\)<4) as EP detector reducing non-flow to <0.5%
 - ~1/4 sample size w.r.t. total minimum bias

- **FMS EP data consistent within uncertainties with TPC EP measurement**

\[v_2(\text{obs.}) = f_b v_2^b + f_c v_2^c + f_{\text{bkg}} v_2^{\text{bkg}} \]

DUKE: Phys. Rev. C 92, 024907
Private Communication
Bottom→e Elliptic Flow

\[v_2(\text{obs.}) = f_b v_2^b + f_c v_2^c + f_{bkg} v_2^{bkg} \]

- **TPC EP measurement null hypothesis with full non-flow subtraction:**
 \[\chi^2/\text{ndof} = 17.1/3, \text{p-value} = .00067 (\sim 3.4\sigma) \]

⇒ **Observation of non-zero bottom electron \(v_2 \)!**

DUKE: Phys. Rev. C 92, 024907
Private Communication
Energy dependence of HF v_2

- Probe of temperature dependence of diffusion coefficient
- Previous HF v_2 measurements in 62.4 and 39 GeV Au+Au collisions inconclusive with limited statistics

Dataset at 54.4 GeV allows more precise measurement at lower energy

15x increase in statistics compared to 62.4 GeV!
Inclusive NPE $v_2 @ 54.4$ GeV

- Significant non-zero values of NPE v_2 in 54.4 GeV Au+Au collisions
- Similar magnitude as NPE $v_2 @ 200$ GeV

\Rightarrow HF(c) quarks interact strongly with the medium in 54.4 GeV Au+Au collisions

See Yuanjing Ji’s poster (HF29) for details!
Summary

- Measured $b \rightarrow e$ suppression less than $c \rightarrow e$ with $\geq 3\sigma$ significance (consistent with $\Delta E(b) < \Delta E(c)$)!
- First observation of non-zero bottom electron v_2 significant at 3.4σ!

- Anisotropic flow for charm-decayed electrons
 - dv_1/dy at $\sim 5\sigma$; consistent with D^0 measurement
 - v_2 consistent with measured $D^0 v_2$

- Significant NPE v_2 in Au+Au collisions at $\sqrt{s_{NN}} = 54.4$ GeV
 - Consistent with NPE v_2 at $\sqrt{s_{NN}} = 200$ GeV
Backup slides follow
Comparisons to PHENIX

- Preliminary PHENIX $b, c \rightarrow e$ from Hard Probes 2018
- Excellent consistency between experiments within uncertainties
HF log(DCA) template model

- HF decayed electron DCA templates from EvtGen generator corrected for efficiency and momentum/position resolution determined from data.

- Ground state $B/D^+/0$, B_s/D_s, and $\Lambda_{b,c}$ hadron decays simulated with all known semileptonic decays:
 - Charm re-weighted with measured D^0 spectra and preliminary hadron fractions from STAR in Au+Au collisions @ $\sqrt{s_{NN}} = 200$ GeV
 - Λ_c corrected using Λ_c/D_0 preliminary measurement from STAR + model calculations in Au+Au collisions @ $\sqrt{s_{NN}} = 200$ GeV
 - Bottom spectra from FONLL; hadron fractions from LHCb p+p measurement

*Less sensitive to b hadron fractions

Large uncertainty coming from D^+/D^0 ratio

LHCb: PhysRevD.100.031102
FONLL: JHEP 1210 (2012)
Charm→e Directed Flow Simulation

- Measured $D^0 v_1$ fit folded into $D \rightarrow e$ simulation
- Electrons with $p_T > 1.2$ GeV/c show little loss of parent hadron v_1 due to decay
Inclusive NPE $v_2 \phi 54.4$ GeV

- Significant non-zero values of NPE v_2 in 54.4 GeV Au+Au collisions
- Similar magnitude as NPE $v_2 \phi 200$ GeV

\rightarrow HF(c) quarks interact strongly with the medium in 54.4 GeV Au+Au collisions

See Yuanjing Ji’s poster (HF29) for details!

Non-flow estimated using electron-hadron correlations in 200 GeV pp data