Signatures of Chiral Symmetry Restoration in Dilepton Production

Chihiro Sasaki
Institute of Theoretical Physics
University of Wroclaw

Ref. CS, arXiv:1906.05077 (v2)

Why chiral mixing?

- Q. Do we see any signal of chiral symmetry restoration in dilepton measurement?
- \square Light vector mesons change their properties in hot/dense matter --- χ -sym. restoration?
- ☐ The best way: V spectrum vs. A spectrum
- □ Axial-vector mesons can show up in vector spectrum in a medium!

<VV> \leftarrow chiral mixing \rightarrow <AA>

My fingers crossed, HIAF/FAIR/J-PARC/NICA/RHIC-BES!

Holographic approach at finite μ B

Spectral function: Not BW

- \square C = 1 GeV, 3-momentum p = 0.5 GeV
- □1 bump of transv. rho, 1 bump of transv. a1

Chiral mixing induced by WZW

□ Wess-Zumino-Witten term [Kaiser, Meissner ('90)]

$$\mathcal{L}_{\omega\rho a_1} = g_{\omega\rho a_1} \epsilon^{\mu\nu\lambda\sigma} \omega_{\mu} \left[\partial_{\nu} V_{\lambda} \cdot A_{\sigma} + \partial_{\nu} A_{\lambda} \cdot V_{\sigma} \right]$$

$$\langle \omega_0 \rangle = g_{\omega NN} \cdot n_B / m_\omega^2$$
 $C = g_{\omega \rho a_1} \cdot g_{\omega NN} \cdot \frac{n_B}{m_\omega^2}$

- \square Mixing strength: $C = 0.1 \text{ GeV at } \rho_0$
 - AdS/QCD \rightarrow C = 1 GeV at $\rho \circ \rightarrow$ vector cond.!?
 - Why so large? --- higher-lying states in large Nccf. VMD

$$C_{\text{hQCD}} \sim C_{\omega\rho a_1} + \sum_{n} C_{\omega^n \rho a_1}$$

Weak mixing ... No impact?

A missing piece: χ sym. restoration

CS, arXiv:1906.05077

Chiral restoration vs. mixing

☐ Dispersion relations for small 3-momenta

$$p_0^2 \simeq m_{a_1,\rho}^2 + \left(1 \pm \frac{4C^2}{m_{a_1}^2 - m_{\rho}^2}\right) \bar{p}^2$$

- \Box The mixing effect will be enhanced as δ m decreases!
 - \triangleright In-medium δ m
 - ➤In-medium mixing C

Set-up: rho/omega

- ☐ Mass difference = order parameter
 - Chiral restoration $\rightarrow <\sigma>$
 - Density effect $\rightarrow <\omega_0>$

Chiral MF models

□ Nucleon parity-doublet model [Zschiesche et al.]

- ✓ Nuclear ground state
- ✓ Constrained by NS [Marczenko et al. (2019)]
- → Masses & mixing

Mass difference vs. mixing: T=50 MeV

Spectral function at T = 50 MeV

(top) chiral restoration (bottom) no restoration

--- longitudinal --- transverse --- average

Set-up: phi

- \square Masses of Φ meson and $f_1(1420)$?
 - Screening mass in LQCD: modification sets in at Tc

[Cheng et al., ('11)]

Rho/omega spectrum at T = 50 MeV

Phi spectra at T = 50 MeV

Dilepton rates at T = 50 MeV

Dilepton rates at T = 50 MeV

Dilepton rates at T = 50 MeV

Adding width broadening

Summary

☐ Parity doubling of vector mesons

- ☐ Chiral sym. restoration in cold dense matter
 - Clear structural change in the dilepton rates
 - Big discovery potential at HIAF/FAIR/J-PARC/NICA/RHIC-BES!

Backup

Low-energy theorem

$$\begin{split} G_V^{\mu\nu}(T) &= (1-\epsilon)G_V^{\mu\nu}(0) + \epsilon\,G_A^{\mu\nu}(0) \\ G_A^{\mu\nu}(T) &= (1-\epsilon)G_A^{\mu\nu}(0) + \epsilon\,G_V^{\mu\nu}(0) \\ \epsilon &= \frac{T^2}{6F_\pi^2} \end{split}$$

[Dey, Eletsky and Ioffe (90)]

$$\epsilon = \frac{4\rho_B \sigma_{\pi N}}{3F_\pi^2 m_\pi^2}$$

[Krippa (98)]

 $\varepsilon \rightarrow 1/2$: chiral restoration? NO!

From low T to high T

- Off chiral limit:
 - Mixing ≈ 0.06 mpi at Tc
 - 2 bumps \rightarrow 1 bump

- ☐ Chiral EFT for pions, rho and a1 at 1 loop
- \square Intrinsic tem. effect in the a1 ρ π interaction

From low T to high T

- ☐ Weinberg SRs [Weinberg ('67); Kapusta, Shuryak ('94)]
- □ Vector SF & ansatz for a1 mass and width
 - ✓ Reduction of a1 mass, width broadening
 - ✓ Role of higher-lying states: ρ' , a1', ...