

Wenqing Fan for PHENIX Collaboration

Quark Matter 2019

Why photons?

Photons are a unique probe for Quark Gluon Plasma (QGP)

- * "Color blind" (do not suffer strong interaction), provide a direct fingerprint of its creation point
- pairs

Direct $\gamma =$ **Inclusive** γ hadronic decay y

All thermal mediums emit thermal radiation in the form of photons or low mass lepton

Direct photon puzzle

Large yield & large v₂

- Large yield: emissions from the early stage when temperature is high
- Large v₂: emissions from the late stage when the collective flow is sufficiently built up

Challenging for current theoretical models to describe large yield and v₂ simultaneously!

PRC 94, 064901 (2016)

New insights

This talk will mainly focus on the yield

Integrated low p_T direct photon yield — universal scaling

beam energies, collisions species, and collision centralities

Universal scaling behavior in all A+A systems

 $dN_{\gamma}/dy = A \times (dN_{ch}/d\eta)^{\alpha}$ of

Source of photons must be similar

GeV/c) O V

• Integrate the low p_T direct photons and use $dN_{ch}/d\eta$ to compare data from different

Integrated low p_T direct photon yield — universal scaling

beam energies, collisions species, and collision centralities

Universal scaling behavior in all A+A systems

 $dN_{\gamma}/dy = A \times (dN_{ch}/d\eta)^{\alpha}$ is

Source of photons must be similar

N_{coll} x pQCD and N_{coll} x p+p follow same scaling at 0.1 of yield

• Integrate the low p_T direct photons and use $dN_{ch}/d\eta$ to compare data from different

Integrated low p_T direct photon yield — universal scaling

beam energies, collisions species, and collision centralities

Universal scaling behavior in all A+A systems

 $dN_{\gamma}/dy = A \times (dN_{ch}/d\eta)^{\alpha}$

Source of photons must be similar

N_{coll} x pQCD and N_{coll} x p+p follow same scaling at 0.1 of yield

Onset of low p_T radiation excess at dN_{ch}/dŋ ~10?

GeV/c) 5.0 O V dN_v/dy

• Integrate the low p_T direct photons and use $dN_{ch}/d\eta$ to compare data from different

Direct photon spectra normalized by $(dN_{ch}/d\eta)^{1.25}$

Different centralities

Direct photon spectra normalized by $(dN_{ch}/d\eta)^{1.25}$

Direct photon spectra normalized by $(dN_{ch}/d\eta)^{1.25}$

Similar low p_T photon yield when scaled by $(dN_{ch}/d\eta)^{1.25}$, independent of energy, centrality, or system size

PRL 123, 022301 (2019)

Closer look into the low p_T range

Same slope in fitted p_T range ~ **280 MeV**

Spectra are not exponential over large p_⊤range

Comparison with STAR

Discrepancy with STAR Au+Au results

STAR data shows the scaling behavior also

The magnitude is lower comparing to **PHENIX results**

R_v via external conversion method

- A new measurement with 2014 Au+Au dataset via external conversion method
 - 10 fold statistics
- \diamond More conversions at silicon vertex detector (VTX) (X/X₀~14%)
- Reconstruct conversion position using e⁺e⁻ pair and B field map and track conversions back to its conversion position

R_v via external conversion method

Systematic uncertainties

- $N_{\gamma}^{incl}/N_{\gamma}^{\pi 0}$ from real data
 - * $N_{\gamma}^{\pi 0}$ extraction (~2%)
 - Conversion sample purity (<1%)</p>
- Conditional acceptance and efficiency
 - Energy scale/resolution (3%)
 - Conversion photon loss due to second conversion / material budget (3%)
 - γ efficiency (~1%)
 - Active area (1%)
 - Input p_T spectra (1%)

 $\gamma^{hadron}/\gamma^{\pi 0}$

- Other mesons (<1%)</p>

$$R_{\gamma} = \frac{\left\langle \epsilon f \right\rangle \left(\frac{N_{\gamma}^{incl}}{N_{\gamma}^{\pi^{0}}}\right)_{Data}}{\left(\frac{\gamma^{hadron}}{\gamma^{\pi^{0}}}\right)_{Sim}}$$

R_y in Au + Au collisions at 200 GeV

R_v in Au + Au collisions at 200 GeV

New result consistent with previous published results using conversion method

R_v in Au + Au collisions at 200 GeV

New result consistent with previous published results using conversion method, virtual y method

R_v in Au + Au collisions at 200 GeV

New result consistent with previous published results using conversion method, virtual y method, calorimeter method

R_{γ} in Au + Au collisions at 200 GeV

New result consistent with previous published results using conversion method, virtual γ method, calorimeter method

4 independent measurements from independent datasets shown here!

Full overlap with the published low p_T and high p_T measurements

Direct photon yield in Au + Au collisions at 200 GeV

Au + Au $\rightarrow \gamma$ + X, $\sqrt{s_{NN}}$ = 200GeV, 20-40% 2014 conversion method PRC 91, 064904 (conversion) PRL 104, 132301 (virtual γ) PRL 109, 152302 (calorimeter) N_{coll} scaled pp fit: A $\left(\begin{array}{c} p_T^2 \\ 1 + \frac{p_T}{p_1} \end{array} \right)^n$ PH FNIX preliminary 2 6 10 4 8 p_ [GeV/c]

At high p_T Au+Au data consistent with N_{coll} scaled p+p result

Clear enhancement observed below **3GeV in** (semi-)central Au +Au collisions

Direct photon yield in Au + Au collisions at 200 GeV

At high p_T Au+Au data consistent with N_{coll} scaled p+p result

Enhancement persists below 3GeV in (semi-)peripheral **Au+Au collisions**

Direct photon scaling with new 2014 results

Direct photon scaling with new 2014 results

Consistent with the observed scaling behavior

in A+A systems

Direct photon scaling with new 2014 results

Consistent with the observed scaling behavior

Summary and Outlook

- PHENIX measured the low p_T direct photon yields in Au+Au collisions at 200 GeV for different centrality bins with 2014 dataset
 - **Consistent with previous published PHENIX results**
 - Higher statistical precision, a full overlap with the published low p_T and high p_T measurements
- More PHENIX data varying size and geometry to be finalized/analyzed

p+p	p+Au	d+Au	³ He+Au	
200 GeV	200 GeV	200 GeV	200 GeV	
QM18	QM18	Coming soon!	Coming soon!	
		Post	Poster by Norbe	
			Poster by Z	

THANKS!

Integrated direct photon yield over different p_T ranges

2005	2003 (roal)	
(virtual)	(real)	
2003		
(roal)		

p+p fit

Fitting function

$$\frac{dN}{dy} = a \left(1 + \frac{p_T^2}{b} \right)^c$$

a	b	С
6.74×10 ³	2.10	-3.30

- **pQCD** inspired function
- The fit <1GeV is motivated by Drell-Yan measurement [Ito, et al, PRD23, 604 (1981)]
- Systematic errors include the fit errors, different functional forms

Characterize System Size via dN_{ch}/dη

- Use $dN_{ch}/d\eta$ to compare data from different beam energies, collisions species, and collision centralities
- $dN_{ch}/d\eta$ is an experimental observable
- At fixed $\sqrt{s} dN_{ch}/d\eta \sim N_{part} \sim volume$
- **Comparing different Vs:**

N_{part} saturates at same value for similar size systems at different beam energies

$dN_{ch}/d\eta \sim energy density x volume$

√S_{NN}

Compare system size and number of binary collisions: empirical scaling relation across

What is the origin of the scaling?

Direct Photon Yield in p+Au @ 200GeV

Direct Photon Yield in p+Au @ 200GeV

Direct photon v2 in Au + Au collisions at 200 GeV

Using R_γ from published results (low p_T: PRC91, 064904; high p_T: PRL109, 152302)

Low p_T : Large azimuthal anisotropy for direct photons (mixture of direct photons from initial scattering and thermal radiation (QGP and HG))

High p_T : ~0 azimuthal anisotropy for the direct photons (dominant source of direct photons is from initial scattering)

What to measure with direct photons?

Thermal radiation

Hot & dense medium: radiate thermal photons

- Spectrum and yield sensitive to temperature Avg. inv. slope $\propto T_{eff}$
- Spectrum also affected by the space time evolution of matter Doppler shift

Measurements of yield will constrain initial conditions, sources, emission rates and space-time evolution

Collective behavior (Flow)

Hydro Model: strongly interacting medium — "perfect fluid"

pressure gradient

initial state eccentricity

final state anisotropy

elliptical flow

$$\frac{dN}{d(\phi - \Psi_{2,RP})} \propto 1 + \frac{2v_2 \cos^2(\phi - \Psi_{2,RP})}{(\phi - \Psi_{2,RP})} + \frac{1}{2v_2 \cos^2(\phi - \Psi_{2,RP})} + \frac{1}{2v_2 \cos^2(\phi - \Psi_{2,RP})}$$

Measurements of flow will constrain initial conditions, fluctuations and some QGP properties (η /s, partonic level flow)

. . .

Direct photon yield in Au + Au collisions at 200 GeV

Direct photon yield in Au + Au collisions at 200 GeV

