

IMPORTANCE OF NON-FLOW BACKGROUND ON THE CHIRAL MAGNETIC WAVE SEARCH

Haojie Xu
Huzhou University, Purdue University

Collaborators: Yicheng Feng, Jie Zhao, Fuqiang Wang

5 November, 2019

THE 28TH INTERNATIONAL CONFERENCE ON ULTRARELATIVISTIC NUCLEUS-NUCLEUS COLLISIONS (QUARK MATTER 2019), WUHAN, China 4-9 November 2018

OUTLINE

 \triangleright CMW and the $\Delta v_2(A_{ch})$ observable

▶Background Sources:

- 1. Trivial linear- A_{ch} term
- 2. The multiple pion source effect
- 3. Non-flow effect
- 4. Local charge conservation, decay kinematics
- > Summary

- Local charge conservation [A. Bzdak, PLB (2013)]
- Isospin chemical potential [Y. Hatta et al, NPA (2016)]

Based on: **arXiv:1910.02896**, HJX, J. Zhao, Y. Feng, F. Wang, "Complications in the interpretation of the charge asymmetry dependent π flow for the chiral magnetic wave"

CHIRAL MAGNETIC WAVE

Chiral Magnetic Effect: $J = \left(\frac{(Qe)^2}{2\pi^2}\mu_5\right)B$

Chiral Separation Effect: $J_5 = \left(\frac{(Qe)^2}{2\pi^2}\mu\right)B$

- D. Kharzeev, PLB 633, 260 (2006)
- D. Kharzeev, PRD 83, 085007 (2006)
- D. Kharzeev, PPNP 88, 1 (2016)

. . .

The **Chiral Magnetic Wave (CMW)** is a gapless collective excitation of the QGP stemming from the interplay of the CME and CSE

THE CMW OBSERVABLE

Y. Burnier, PRL 107, 052303 (2011)

The A_{ch} -dependent elliptic flow

$$v_2^{\pm} = v_2 \mp \frac{rA_{ch}}{2}$$

where

$$A_{ch} = \frac{N_{+} - N_{-}}{N_{+} + N_{-}}$$

Charge quadrupole moment

The CMW observable: slope of $\Delta v_2(A_{ch}) \equiv v_2^-(A_{ch}) - v_2^+(A_{ch})$

EXPERIMENTAL MEASUREMENTS

Norm slope is extracted from

Norm.
$$\Delta v_n = 2 \frac{v_n^- - v_n^+}{v_n^+ + v_n^-}$$

1) ANALYSIS FLAW: TRIVIAL LINEAR A_{ch} TERM

The two-particle Q-cumulant flow

$$v_n\{2\} = d_n\{2\}/\sqrt{c_n\{2\}}$$

For all charges as REF, $d_n\{2\}$ can be written as

$$d_{n}\{2; \pi^{\pm}h\} = \left\langle \frac{\sum q_{n}^{\pi^{\pm}} Q_{n}}{\sum mM} \right\rangle = \frac{1 + A_{ch}}{2} \left\langle \frac{q_{n}^{\pi^{\pm}} Q_{n+}}{mN_{+}} \right\rangle + \frac{1 - A_{ch}}{2} \left\langle \frac{q_{n}^{\pi^{\pm}} Q_{n-}}{mN_{-}} \right\rangle$$

$$= \frac{d_{n}\{2; \pi^{\pm}h^{+}\} + d_{n}\{2; \pi^{\pm}h^{-}\}}{2} \left\{ \frac{d_{n}\{2; \pi^{\pm}h^{+}\} - d_{n}\{2; \pi^{\pm}h^{-}\}}{2} A_{ch} \right\}$$

The trivial term arises when:

- All charges are included in REF
- Non-flow differs between like- and unlike-sign pairs. (if only flow, then it vanishes)

1) TRIVIAL LINEAR A_{ch} TERM: TOY MODEL STUDY

- ➤ Back-to-back unlike-sign non-flow correlations
- $\triangleright v_n = 4\%$ is used for both π^+ and π^- , no input Ach dependence.
- $ightharpoonup r_0$ (trivial term included), r (trivial term removed)

Single-sign charges as reference to remove the trivial term

2) THE MULTIPLE PION SOURCE EFFECT

From the two-component model ($\epsilon = N_D/N_P$), assume the charge asymmetry distributions of each sources A_P and A_D are both normal distributions with width σ_P and σ_P ,

$$\Delta v_n = \frac{2\epsilon(\epsilon\sigma_D^2 - \sigma_P^2)(v_{n,P} - v_{n,D})}{(1+\epsilon)(\epsilon^2\sigma_D^2 + \sigma_P^2)} A_{ch} \equiv r^{2C} A_{ch}$$

8

3) NON-FLOW DILUTION EFFECT

For like-sign non-flow correlations:

$$A_{ch} > 0$$

- \rightarrow large π^+ multiplicity
- → more non-flow dilution
- \rightarrow smaller $\pi^+ v_2$
- → positive slope

- ☐ Close-pair like-sign non-flow correlations
- ☐ Trivial term have been removed

4) LOCAL CHARGE CONSERVATION (LCC) EFFECT

DETOUR – EFFECT OF DECAY KINEMATICS

Fix resonance p_T (use mean value from data). No effect from LCC.

Without LCC effect, the slope parameter from decays is negative.

4) LCC: INDIVIDUAL SOURCE

Mass effect, 2-body or 3-body decays

4) LCC: MULTIPLE SOURCE

Primordial π^+ and π^- :

☐ Independent production

☐ LCC correlations

SUMMARY

Non-CMW mechanisms can generate A_{ch} -dependent π flows

- 1. Trivial linear- A_{ch} term
- 2. The multiple pion source effect

HJX et al, arXiv:1910.02896

- 3. Non-flow effect
- 4. Resonance decays, decay kinematics, Local Charge Conservation

- The A_{ch}-dependent pion flow v₂ difference CMW observable is awfully **complicated !!**
- In order to say anything about the CMW, a precise modeling of all heavy-ion collision backgrounds is a must-prerequisite.