Signatures of collectivity in small systems observed by PHENIX

Seyoung Han
for the PHENIX collaboration

Center for Extreme Nuclear Matters
Hydrodynamical model calculation of the small collision systems shows collective behavior.

The initial geometry effect propagates to the final stage.
Initial geometry and the v_n

The hierarchy of v_2 and v_3 consistent with that of ε_n.

The hierarchy of v_2 and v_3 consistent with that of ε_n. Initial geometry dependence of v_2 is studied using different collision systems.
Hydrodynamic model calculations are showing the best agreement with the v_n measurements in 3 collision systems ($p/d/^3\text{He}+\text{Au}$).
\(v_2 \) and the \(dN_{ch}/d\eta \) scaling

In larger systems (d+Au and \(^3\)He+Au) the \(dN_{ch}/d\eta \) and \(v_2 \) rapidity dependence have the same shape.

In smaller systems (p+Au) deviations are observed near the event plane detector.

Is there some non-flow or other effect?
Method comparison

1. Published data with the event plane detector
2. Two-particle correlation reconstructs the same results (no nonflow estimation in the systematic uncertainties)

Graphical Presentation

- **p+Au 200 GeV, h^±, |η|<0.35, 0-5%**
- **v_2(EP), PRC 95, 034910**
- **v_2(2PC), -4<|η|<-3, -3<|η|<-1, |η|<0.35**
 - Nonflow is not estimated

Legend

- BBCS
- FVTX S
- CNT
- FVTX N
- BBCN

PHENIX PRC: BBCS-FVTXS-CNT
Method comparison

1. Published data with the event plane detector
2. Two-particle correlation reconstructs the same results (no nonflow estimation in the systematic uncertainties)
3. STAR two-particle result shows systematically larger v_2 (no nonflow estimation either)
Method comparison

1. Published data with the event plane detector
2. Two-particle correlation reconstructs the same results (no nonflow estimation in the systematic uncertainties)
3. STAR two-particle result shows systematically larger v_2 (no nonflow estimation either)
4. PHENIX can reconstruct the STAR result choosing the same kinematics.
Multi-particle correlation

- two-, four-particle angular correlations
- Multi-particle correlation suppress the nonflow

\[v_2 \{2\} = \left(v_2^2 + \sigma^2 + \delta^2 \right)^{1/2} \quad : \quad \text{fluctuation + nonflow effect} \]

\[v_2 \{4\} \approx v_2 \{6\} \approx \left(v_2^2 - \sigma^2 \right)^{1/2} \quad : \quad \text{fluctuation} \]

\[v_2 \{4\} = (-c_2 \{4\})^{-1/4} \]

Multi-particle correlation provide information how the event-by-event flow fluctuating
Correlations in d+Au

• two-, four-particle angular correlations

$v_2\{2\}$, $v_2\{2, |\Delta \eta| > 2\}$, $v_2\{4\}$, $v_2\{6\}$ show the collective behavior in high-multiplicity events.
Correlations & fluctuations in p/d+Au

- $v_2\{4\}^2 \approx \langle v_2 \rangle^2 - \sigma^2$
 - $c_2\{4\}$ in p+Au is dominated by fluctuations
- AMPT (A Multi-phase transport model) describes the sign
Initial eccentricity distributions

Monte-Carlo Glauber

Initial eccentricity distribution is highly non-Gaussian

Fluctuations are highly non-trivial in small systems.

\[\langle \varepsilon^2 \rangle = 0.27, \sigma = 0.14, s = 0.51, k = 2.86 \]

\[\langle \varepsilon^2 \rangle = 0.56, \sigma = 0.24, s = -0.16, k = 1.97 \]
Sub-event cumulant method

• To investigate further effect of
 – the suppressing the nonflow
 – the role of the fluctuations

• Expected nonflow contaminations: \(aa | bb < ab | ab < \) standard method

\[
\langle\langle 4 \rangle\rangle = \left\langle\left\langle e^{i\phi_a} (\phi_a + \phi_a - \phi_b - \phi_b) \right\rangle\right\rangle
\]
Sub-event cumulant method

• To investigate further effect of
 – the suppressing the nonflow
 – the role of the fluctuations

• Expected nonflow contaminations: \(aa|bb < ab|ab < \) standard method

\[\langle\langle 4 \rangle\rangle = \langle\langle e^{in}(\phi_a + \phi_b - \phi_a - \phi_b) \rangle\rangle \]
Sub-event cumulant in p+Au

c\textsubscript{2}\{4\} remains positive in sub-event selections

The origin could be attributed to the fluctuations

- Poster by Qiao Xu
Summary

• Collective behavior was observed in small systems by the PHENIX experiment
 – Measured v_n are well described by viscous hydro model
 – Confirmed initial geometry effect in the medium formed in small systems ($p/d/^{3}$He + Au)

• Systematic studies of non-flow and fluctuation dependencies
 – The $v_2\{2\text{PC}\}$ reconstructed in different kinematics
 – Small variance limit breaks in p+Au and in d+Au collisions
 – Flow fluctuations are significant in $c_2\{4\}$ in p+Au collisions confirmed by sub-event cumulant analysis
THANK YOU
Comparison with STAR

1. Published data with the event plane detector
2. 2-particle correlation reconstructs the same results (no nonflow estimation in the systematic uncertainties)
3. STAR 2-particle result shows systematically larger v_2 (no nonflow estimation either)
4. PHENIX can reconstruct the STAR result choosing the same kinematics.

Add as animation

ϕ $^+$ $^{197\text{Au}} + \phi$, $h\eta < 0.35$, 0-5%

$\diamondsuit v_2^{\{EP\}}$, PRC 95, 034910

$\square v_2^{\{2PC\}}$, $-4 < \eta < -3$, $-3 < \eta < -1$, $h\eta < 0.35$

$\star v_2^{\{2PC\}}$, $-3 < \eta < -1$, $h\eta < 0.35$, $1 < \eta < 3$

\star STAR prelim. $v_2^{\{2PC\}}$, 0-10%, $|\Delta \eta| > 1$

PHENIX preliminary

V_2

$P_T^{\text{CNT}}[\text{GeV/c}]$

PHENIX: BBCS-FVTXS-CNT

STAR prelim.: FVTXS-CNT-FVTXN

Add as animation
Multi-particle correlation

- two-, four-particle angular correlations

- BBCS
- FVTX S
- CNT
- FVTX N
- BBCN

-4 -3 -2 -1 0 1 2 3 4

- Au - going
- p/d/\(^3\)He - going
Initial geometry and multiplicity

The dA shows larger $v2$, the initial eccentricity carries into the final result.

Comparison of dA and pA at same multiplicity
The new PHENIX results are in good agreement with the previous PHENIX results (Run 8) at the mid-rapidity.
The new PHENIX results are in **good agreement** with the previous PHENIX results (Run 8) at the mid-rapidity.

Also the $dN_{ch}/d\eta$ measured at the wider range of rapidity by using the FVTX.

Good agreement with PHOBOS data
Multi-particle correlation

- two-, four-particle angular correlations

\[\langle 2 \rangle = \langle \cos(n(\phi_1 - \phi_2)) \rangle = \langle v_n^2 \{2\} \rangle \]

\[v_n^2 \{2\} = \left(v_n^2 + \sigma^2 + \delta^2 \right)^{1/2} \]

Average over particles in a single event

Nonflow Fluctuations

Multi-particle correlation

- two-, four-particle angular correlations

\[\langle 4 \rangle = \langle \cos(n(\phi_1 + \phi_2 - \phi_3 - \phi_4)) \rangle = \langle v_n^2 \rangle \]

\[v_2 \{4\} \approx \left(v_2^2 - \sigma^2\right)^{1/2} \]

Negligible nonflow is expected

Fluctuations
Multi-particle correlation

- two-, four-particle angular correlations

\[\langle 4 \rangle = \langle \cos(n(\phi_1 + \phi_2 - \phi_3 - \phi_4)) \rangle = \langle v_n^2 \rangle \]
Multi-particle correlation

- two-, four-particle angular correlations

\[\langle 4 \rangle = \langle \cos(n(\phi_1 + \phi_2 - \phi_3 - \phi_4)) \rangle = \langle v_n^2 \rangle \]

This changing derives smaller $|\Delta \eta|$ between the tracks.
Multi-particle correlation

- two-, four-, six-particle angular correlations

\[\langle 6 \rangle = \langle \cos(n(\phi_1 + \phi_2 + \phi_3 - \phi_4 - \phi_5 - \phi_6)) \rangle = \langle v_n^2 \rangle \]

\[c_n \{6\} = \langle \langle 6 \rangle \rangle - 9 \langle \langle 4 \rangle \rangle \langle \langle 2 \rangle \rangle + 12 \langle \langle 2 \rangle \rangle^3 = 4[\{ v_n \{6\} \}]^6 \]
Multi-particle correlation

- two-, four-, six-particle angular correlations

\[v_2 \{2\} = \left(v_2^2 + \sigma^2 + \delta^2 \right)^{1/2} \]

\[v_2 \{4\} \approx v_2 \{6\} \approx \left(v_2^2 - \sigma^2 \right)^{1/2} \]
Multi-particle correlation

- two-, four-particle angular correlations

\[\langle 2 \rangle = \langle \cos(n(\phi_1 - \phi_2)) \rangle = \langle v_n^2 \{2\} \rangle \]

\[\langle \langle 2 \rangle \rangle = c_n \{2\} = [v_n \{2\}]^2 \]

Average over particles in a single event

1. Average over particles in a single event
2. Average over events