

Office of Science

PARTON MODIFICATION AND MEDIUM RESPONSE STUDIES USING EW-BOSON-TAGGED JETS AND HADRONS

Ran Bi on behalf of Kaya Tatar and the CMS Collaboration

> Quark Matter 2019 6 Nov 2019 Wuhan, China

- jet quenching is a characteristic feature of the QGP

JET SUBSTRUCTURE IN PBPB COLLISIONS (INCLUSIVE JETS)

- differentiate between different energy loss mechanisms
- jet fragmentation function

$$\xi^{\text{jet}} = \ln \frac{|\mathbf{p}^{\text{jet}}|^2}{\mathbf{p}^{\text{trk}} \cdot \mathbf{p}^{\text{jet}}}$$

PRC 90 (2014) 024908

JET SUBSTRUCTURE IN PBPB COLLISIONS (INCLUSIVE JETS)

- differentiate between different energy loss mechanisms
- jet shape

$$\rho(r) = \frac{1}{\delta r} \frac{\sum_{\text{jets}} \sum_{\substack{r_a < r < r_b}} (p_T^{\text{trk}} / p_T^{\text{jet}})}{\sum_{\text{jets}} \sum_{\substack{0 < r < r_f}} (p_T^{\text{trk}} / p_T^{\text{jet}})}, \quad r = \sqrt{\Delta \eta^2 + \Delta \phi^2}$$

PLB 730 (2014) 243

INCLUSIVE DIJETS IN PBPB COLLISIONS

inclusive dijets are good probes of the medium, with caveats

- coloured both jets are subject to medium-induced energy loss
- "surface bias" selections based on final state momentum biases jet population
- parton flavour dependence quark and gluon jets quench different

inclusive dijets are good probes of the medium, with caveats

- coloured both jets are subject to medium-induced energy loss
- "surface bias" selections based on final state momentum biases jet population
- parton flavour dependence quark and gluon jets quench different

electroweak bosons are good probes of the medium

- coloured both jets are subject to medium-induced energy loss
- "surface bias" selections based on final state momentum biases jet population
- parton flavour dependence quark and gluon jets quench different

loss piases jet populatior lifferent

• electroweak bosons are good probes of the medium

- colourless not subject to medium-induced energy loss
- "surface bias" selections based on final state momentum biases jet population
- parton flavour dependence quark and gluon jets quench different

biases jet population ifferent

electroweak bosons are good probes of the medium

- colourless not subject to medium-induced energy loss
- good proxy to the initial energy of partons produced in the hard scattering
- parton flavour dependence quark and gluon jets quench different

electroweak bosons are good probes of the medium

- colourless not subject to medium-induced energy loss
- good proxy to the initial energy of partons produced in the hard scattering
- production processes constrain quark/gluon fraction of recoil parton

- electroweak bosons are good probes of the medium
 - colourless not subject to medium-induced energy loss
 - good proxy of the initial energy of partons produced in the hard scattering
 - production processes constrain quark/gluon fraction of recoil parton
 - cross sections: photons > Z bosons; background: photons > Z bosons
- Z bosons
 - reconstructed through dilepton channels

- photons (isolated photons)
 - background mostly from neutral meson decays
 - subtracted using a template fit method
 - signal template: Monte Carlo, background: data sideband

- jets and tracks from the underlying event are uncorrelated with the photon
 - minimum bias (MB) events are another source of uncorrelated jets and tracks
 - estimate contribution of background by embedding the photon into MB events
 - select events with similar characteristics: event activity, vertex position, event plane
- subtraction for jet-based observables is straightforward

- jets and tracks from the underlying event are uncorrelated with the photon
 - minimum bias (MB) events are another source of uncorrelated jets and tracks
 - estimate contribution of background by embedding the photon into MB events
 - select events with similar characteristics: event activity, vertex position, event plane
- subtraction for jet-based observables is straightforward

with the photon ted jets and tracks ton into MB events on, event plane

- jets and tracks from the underlying event are uncorrelated with the photon
 - minimum bias (MB) events are another source of uncorrelated jets and tracks
 - estimate contribution of background by embedding the photon into MB events
 - select events with similar characteristics: event activity, vertex position, event plane
- contributions from background tracks and background jets must both be subtracted

- jets and tracks from the underlying event are uncorrelated with the photon
 - minimum bias (MB) events are another source of uncorrelated jets and tracks
 - estimate contribution of background by embedding the photon into MB events
 - select events with similar characteristics: event activity, vertex position, event plane
- contributions from background tracks and background jets must both be subtracted

- jets and tracks from the underlying event are uncorrelated with the photon
 - minimum bias (MB) events are another source of uncorrelated jets and tracks
 - estimate contribution of background by embedding the photon into MB events
 - select events with similar characteristics: event activity, vertex position, event plane
- contributions from background tracks and background jets must both be subtracted

- jets and tracks from the underlying event are uncorrelated with the photon
 - minimum bias (MB) events are another source of uncorrelated jets and tracks
 - estimate contribution of background by embedding the photon into MB events
 - select events with similar characteristics: event activity, vertex position, event plane
- contributions from background tracks and background jets must both be subtracted

MOMENTUM IMBALANCE IN PBPB COLLISIONS

- results give a crude picture of jet quenching
 - more detailed measurements required for a complete description

PLB 785 (2018) 14

PRL 119 (2017) 082301

PHOTON-TAGGED JET FRAGMENTATION FUNCTION

enhancement of low-p_T particles, depletion of high-p_T particles

PRL 121 (2018) 242301

projection of track momentum onto jet axis

PHOTON-TAGGED JET FRAGMENTATION FUNCTION

enhancement of low-pT particles, depletion of high-pT particles

PRL 121 (2018) 242301

projection of track momentum onto jet axis

projection of track transverse momentum onto photon axis

PHOTON-TAGGED JET FRAGMENTATION FUNCTION

stronger modification for ξ_T^{γ} than for ξ^{jet} - jets are quenched

PRL 121 (2018) 242301

MODEL PREDICTIONS (FRAGMENTATION FUNCTION)

- models describe data to different extents
 - enhancement at large ξ (low-p_T particles) underestimated
 - SCET_G and CoLBT-hydro models describe trend of observables
 - back reaction improves agreement of hybrid model with data

PHOTON-TAGGED JET SHAPE

- distribution of jet energy in transverse direction with respect to jet axis
 - complementary information to jet fragmentation function

PRL 122 (2019) 152001

PHOTON-TAGGED JET SHAPE (COMPARISONS)

- comparison to inclusive jet shapes no dip at intermediate r
 - increased quark/gluon ratio
 - lower jet p_T threshold jets lose more energy

PRL 122 (2019) 152001

PHOTON-TAGGED JET SHAPE (COMPARISONS)

- comparison to inclusive jet shapes no dip at intermediate r
 - increased quark/gluon ratio
 - lower jet pT threshold jets lose more energy

PRL 122 (2019) 152001

- comparison to models
 - SCET_G/LBT both describe trend
 - different mechanisms, interpretations

SUMMARY

- jet substructure is a good probe of parton modifications and medium response
 - EW bosons constrain initial parton momentum and quark/gluon fractions
- in-medium jet energy loss and modifications of jet fragmentation functions and jet shape
 - relatively unmodified jet core
 - depletion of intermediate p_T particles
 - enhancement of low p_T particles away from the jet axis

PRL 122 (2019) 152001

This work is supported by the DOE Office of Science

BACKUP

QUARK/GLUON FRACTIONS

.

h

Quark Matter 2019