Evidence of top quark production in nucleus-nucleus collisions CMS PAS HIN-19-001

Top quark studies @ LHC: 4 √snn & 2 systems!

Inclusive tf cross section [pb]

○ l+iets

- Top quark is multifaceted
- A wealth of top pair (tt) production measurements
 - At 5, 7, 8, and 13 TeV
 - In pp and pPb collisions
- A new era for nuclear-modification studies on top quark production
 - Initial state
 - To probe nuclear PDFs at high (x, Q^2) values
 - Final state
 - Novel tool for parton energy loss

pPb (174 nb⁻¹, 8.16 TeV)

Center-of-mass energy [TeV]

Measurements of tt cross section: general approach 3

- Choose the final state
 - ≥ 1 lepton (+jets)
 - less bkg dominated
- Apply MVA techniques
 - b tagging and signal extraction
- Define the "visible" phase space
 - Kinematic requirements on physics objects
 - In bins of (b) jet multiplicity
 - Perform likelihood fits to counts or distributions
 - The cross section (σ) is extracted

JHEP 03 (2018) 115

The first search for tt̄ using NN (≡PbPb) collisions 4

- Dileptonic final states: the best S/B for high event count and a distinct signature
 - [Phys. Lett. B **746** (2015) 64]
 - Perturbative QCD cross section (3.2 ub) \times luminosity (1.7 /nb in 2018): $\mathcal{O}(100)$ candidate events

The first search for tt using NN (=PbPb) collisions 5

- Dileptonic final states: the best S/B for high event count and a distinct signature
 - \bullet Leptons (electrons or muons) are of **high p**_T, **isolated**, and **opposite charge**
 - Main background from prompt (e.g., \mathbb{Z}/γ^*) or nonprompt (e.g., QCD multijet, W+jets) leptons

- All NN (N=p,n) \rightarrow tt, bkg processes at **next-to-leading order** (NLO) in pQCD
 - EPPS16 nPDFs, embedded to HYDJET
 - Nonprompt bkg from event mixing
 - cross checked with W+jets MC simulation

- Boosted Decision Trees (BDTs): kinematics from the two leading- p_T leptons
 - Easy to calibrate and robust against medium-modification effects
- Very good discrimination between tt signal (high BDT score) and bkg (low BDT score)
 - we fit the BDTs simultaneously in all three final states

The cross-flavor final state the most sensitive, as expected!

- Basic ingredients: **acceptance** (\mathcal{A}), **efficiency** (ε), and **total** (stat \oplus syst) unc
 - A at NLO; ε from MC with data-driven correction
- The bkg-only hypothesis is excluded at 3.8σ

The first evidence of top quarks in PbPb!

9

£ = $1.7 \pm 0.1 / \text{nb}$

 $= 2.56 \pm 0.82 \mu b$

dσ/σ ≈ 30 %

- The cross section is measured 2.56 \pm 0.69 (stat) \pm 0.43 (exp) \pm 0.13 (theo) μ b
 - The statistical uncertainty is dominant
- Total number of signal events from all three final states: 43
 - compatible with that we initially expected

Including the information from jets

- Enriching the final state topology with the **b** jet info: phase space regions with different signal purity
 - Jets (anti- k_T , 0.4) are also of **high** p_T with falling η distribution
 - An optimized algorithm successfully tags 60–70% of the b jets

The signal and bkg b jet multiplicity

- We count the number of events in the three final states with 0, 1, and 2 b-tagged jets
 - selecting the jets with the **highest** b tagging score
- Additional systematic uncertainties well under control
 - [Phys. Rev. Lett. 119 (2017) 062302]

 Experimental (b-tagging efficiency, JES/JER)

 jet quenching parametrization uncertainty in signal

- We fit the lepton-only BDT classifier simultaneously at all three final states
 - correlating the number of events with 0, 1, and 2 b-tagged jets
 - This boosted our **expected** significance $> 5\sigma$
- The bkg-only hypothesis excluded at a similar level, i.e., 4σ

Increased sensitivity by adding jets

Measuring the tt cross section with leptons+b-tags 13

£ = $1.7 \pm 0.1 / \text{nb}$

 σ = 2.02 ± 0.69 µb

σ / σ ≈ 35 %

- We extracted σ with a similar precision relative to the lepton-only measurement
 - compatible with each other
- b-tagging is a powerful tool to flag tt production
 - tt provides a pure sample of b jets throughout the QGP evolution

Up-to-date compilation: 4 √snn & 3 systems @ LHC!

- First experimental evidence of the top quark in nucleus-nucleus collisions
 - using leptons only and leptons+b jets
- It establishes a **new tool** for probing nPDFs as well as the QGP properties

U.S. DEPARTMENT OF Office of Science

CMS PAS HIN-19-001

Splitting uncertainty in a stat & syst component

- There is no unique method
 - stat: fix nuisances to post-fit values and refit with floating σ_{tt}
 - syst: fix nuisances once at a time to post-fit unc and refit with

Table 2: Observed impact of each source of uncertainty in the signal strength μ , for the leptonic-only and leptonic+b-tagged analyses. The total uncertainty is obtained from the covariance matrix of the fits. The values quoted are symmetrized.

Source	$\Delta\mu/\mu$			
Source	leptonic-only	leptonic+b-tagged		
Total statistical uncertainty	0.27	0.28		
Total systematic experimental uncertainty	0.17	0.19		
Background normalization	0.12	0.12		
Background and tt signal distribution	0.07	0.08		
Lepton selection efficiency	0.06	0.06		
Jet energy scale and resolution	_	0.02		
b tagging efficiency	_	0.06		
Integrated luminosity	0.05	0.05		
Total theoretical uncertainty	0.05	0.05		
nPDF, $\mu_{\rm R}$, $\mu_{\rm F}$ scales, and $\alpha_{\rm S}(m_{\rm Z})$	< 0.01	< 0.01		
Top quark and Z boson p_T modeling	0.05	0.05		
Top quark mass	< 0.01	< 0.01		
Total uncertainty	0.32	0.34		

Impacts (observed)

Impacts and post-fit nuisance values obtained after the leptonic-only (left) and the leptonic+b-tagged (right) fits. Only the 15 leading nuisance parameters are shown.

Per-channel sentitivity

Table 3: Signal strength μ and significance in standard deviations including only the $e^{\pm}\mu^{\mp}$ channel in the fit and compared to the $e^{+}e^{-},\mu^{+}\mu^{-}$, and $e^{\pm}\mu^{\mp}$ measurements. The observed (expected) results of the fits are reported.

Fit alternative	Signal strength μ	Significance
$e^{\pm}\mu^{\mp}$ (leptonic only)	$0.66^{+0.24}_{-0.22} \ (1.00^{+0.27}_{-0.25})$	3.3 (4.7)
$\mathrm{e^+e^-}$, $\mu^+\mu^-$, and $\mathrm{e^\pm}\mu^\mp$ (leptonic only)	$0.81^{+0.26}_{-0.23} (1.00^{+0.26}_{-0.23})$	3.8 (4.8)

 e^{μ} (reprofile + b - ragged) $0.01_{-0.20} (1.00_{-0.23})$

4.0(6.0)

 $e^+e^-, \mu^+\mu^-$, and $e^\pm\mu^\mp$ (leptonic+b-tagged) $0.64^{+0.22}_{-0.20}$ (1.00 $^{+0.24}_{-0.21}$)

Event yields

Table 1: Number of expected background and signal events, and observed event yields in the e^+e^- , $\mu^+\mu^-$, and $e^\pm\mu^\mp$ event categories for the three b jet multiplicities (0b, 1b, 2b) after all selection criteria and the signal extraction fit.

		0							
				F	inal state				
Process		$\mathrm{e^{+}e^{-}}$			$\mu^+\mu^-$			$\mathrm{e}^{\pm}\mu^{\mp}$	
-	0b	1b	2b	0b	1b	2b	0b	1b	2b
Z/γ^*	389.8 ± 15.4	$40.4{\pm}2.7$	4.4 ± 0.8	1027.5 ± 27.3	136.1 ± 5.7	14.1 ± 1.7	35.1 ± 1.7	$4.4{\pm}0.9$	0.7 ± 0.2
Nonprompt	17.3 ± 2.2	$1.4 {\pm} 0.2$	≤ 0.1	7.6 ± 1.0	$0.8 {\pm} 0.1$	≤ 0.1	17.1 ± 1.9	$4.0 {\pm} 0.4$	≤ 0.1
tW	1.1 ± 0.2	0.9 ± 0.2	≤ 0.1	$1.8 {\pm} 0.4$	1.3 ± 0.3	0.2 ± 0.1	3.4 ± 0.7	2.5 ± 0.5	$0.4 {\pm} 0.1$
VV	1.9 ± 0.3	$0.2 {\pm} 0.1$	≤ 0.1	3.3 ± 0.6	$0.4 {\pm} 0.1$	≤ 0.1	$5.4 {\pm} 0.9$	$0.6 {\pm} 0.1$	≤ 0.1
Total background	410.2 ± 15.1	$42.8 {\pm} 2.7$	$4.5 {\pm} 0.8$	1040.2 ± 27.1	138.6 ± 5.7	$14.4 {\pm} 1.8$	61.1 ± 2.9	11.5 ± 1.3	1.1 ± 0.2
tī signal	$2.8 {\pm} 0.8$	3.2 ± 0.8	1.3 ± 0.4	$4.5 {\pm} 1.2$	5.1 ± 1.2	1.9 ± 0.6	$9.7{\pm}2.5$	$10.7 {\pm} 2.4$	$4.0 {\pm} 1.2$
Observed (data)	410	48	9	1064	139	8	70	14	6

Signal separation: measuring tt with leptons only

 \square Use the kinematics of the two leading- p_T leptons to train a BDT

- $p_{\mathrm{T}}(\ell_1)$, the p_{T} of the highest- p_{T} lepton,
- A_{p_T} , the asymmetry in the lepton- p_T 's, namely $\frac{p_T(\ell_1)-p_T(\ell_2)}{p_T(\ell_1)+p_T(\ell_2)}$,
- $p_{\rm T}(\ell\ell)$, the $p_{\rm T}$ of the dilepton system,
- $|\eta(\ell\ell)|$, the absolute η of the dilepton system,
- $|\Delta\phi(\ell\ell)|$, the absolute value of the separation in ϕ of the two leptons, and
- $\Sigma |\eta_i|$, the sum of the absolute η 's of the leptons.

Dilepton sphericity: prefit (left) and postfit (right)

GEN and RECO level b jet distributions

Distributions for the two reconstructed jets with highest b-tag discriminator value in tt and DY simulations. The generator level transverse momentum is shown on the top, while the b-tag discriminator is shown on the bottom. The left (right) distributions correspond to the best (second-best) ranked jet in the b-tag discriminator.

Fit procedure

- A profile likelihood method is used to extract the signal strength

Experimental

Theory

Luminosity

Δmt=±1 GeV

Nuclear PDFs/QCD scales

Top p_T based on pp prescription

- Log-normal for rate-related or Gaussian nuisances for shapes

centrality/ $p_{T/}\eta$ -dependent trigger/ID/isolation scale factors

Nonprompt normalization based on same-sign data counts

Shape statistical uncertainties (Barlow-Beeston)

Z p_T modeling based on data/MC uncertainty

Systematic uncertainties are encoded as nuisance parameters

Identification of heavy-flavour jets

Table 1: Input variables used for the Run 1 version of the CSV algorithm and for the CSVv2 algorithm. The symbol "x" ("—") means that the variable is (not) used in the algorithm

Input variable	Run 1 CSV	CSVv2	<u> </u>
SV 2D flight distance significance	X	X	
Number of SV		X	
Track $\eta_{\rm rel}$	X	X	
Corrected SV mass	X	X	
Number of tracks from SV	X	X	
SV energy ratio	X	X	
$\Delta R(SV, jet)$	_	X	jet tracks charged tracks lepton
3D IP significance of the first four tracks	X	X	heavy-flavour
Track $p_{T,rel}$		X	jet
$\Delta R(\text{track}, \text{jet})$	· ·	X	Jion aga .
Track $p_{T,rel}$ ratio		X	PV IP
Track distance	<u></u>	X je	31
Track decay length		X	HNST 12 (2019) D05011
Summed tracks $E_{\rm T}$ ratio		X	JINST 13 (2018) P05011
ΔR (summed tracks, jet)	_	X	I
First track 2D IP significance above c threshold		X	
Number of selected tracks		X	I
Jet p_{T}	_	X	
Jet η		X	

Surpassing the baseline luminosity goals

- LHC collided more types of beam, than originally foreseen, with better performance
 - In practice, we've come close to the "HL-LHC" performance with PbPb and pPb collisions
 - In 2018 the peak luminosity at IP1/5 reached ×6 the design without magnet quenches Opens up further opportunities for high-density QCD studies
 - For probes **not accessible** so far due to lower luminosity or energy
 - All 4 experiments participate → complementary phase space regions, cross checks CMS Integrated Luminosity Delivered, PbPb+pPb

Theoretical setup for cross section calculation

- Rely on the two fundamental concepts of QCD
 - factorization (calculable) and universality (input from PDFs)
 - \bullet $\sigma_{AA} = A \times A \times \sigma_{OO}$
 - top++(v2.0) NNLO+NNLL calculator with state-of-the-art (n)PDFs
 - bound nucleons' PDF: EPPS16 NLO; baseline free proton PDF: CT14 NLO
 - nPDF net effects result in a small +6% modification (Rρьρь) of σtt
 - nPDF \otimes PDF uncertainty from the provided 56+40 eigenvalues \rightarrow 10%
 - full calculation repeated with nCTEQ15
 - considering the 33 error sets
 - \square QCD scales choice: $\mu_R = \mu_F = 172.5$ GeV
- scale variations by halving/doubling the µR, µF Proton

Hadronization

 \bigcirc $\sqrt{\text{SNN}} = 5.02 \text{ TeV}$

-scatterina ⊗ Hadronization

PDF

ott = /3.1_{-7.3} (PDF)_{-2.5} (scale) ρb FDDS1/

Key characteristics of the latest fits of nPDFs (in chronological order from left to right)

	EPSO9	DSSZ12	ка15	NCTEQ15	EPPS 16
Order in α_s	LO & NLO	NLO	NNLO	NLO	NLO
Neutral current DIS ℓ +A/ ℓ +d	✓	✓		✓	✓
Drell-Yan dilepton p+A/p+d	✓	✓	✓	✓	✓
RHIC pions d+Au/p+p	✓	✓		✓	✓
Neutrino-nucleus DIS		✓	Не	ssian matrix	✓
Drell-Yan dilepton π + A			€		√
LHC p+Pb jet data	$\chi^2_{\mathrm{global}} \approx \chi^2_0 + \sum_{i,j}$	$(a_i - a_i^0)$	H_{ij} $(a_j - a_j)$	$\sum_{j=0}^{0} z_{0}^{2} + \sum_{i} z_{i}^{2}$	√
LHC p+Pb W, Z data		_			✓
		Parameter var	lations		
arXiv:1704.04036 <i>Q</i> cut in DIS	1.3 GeV	1 GeV	1 GeV	2 GeV	1.3 GeV
datapoints	929	1579	1479	708	1811
free parameters	15	25	16	17	20
error analysis	Hessian	Hessian	Hessian	Hessian	Hessian
00% CL defined by the global error to ferance $\Delta\chi^2$	50	30	not given	35	52
Free proton baseline PDFs	стеоб.1	мѕтw2008	jr09	стеобм-like	ст14NLO
Heavy-quark effects		✓		✓	✓
Flavor separation				some	✓
Reference	[JHEP 0904 065]	[PR D85 074028]	[PR D93, 014026]	[PR D93 085037]	[EPJ C77 163]

As compared to the PD	F fitting landscape
-----------------------	---------------------

CT14

X

×

Hessian

 $\Delta \chi^2$ dynamical

Bernstein

(30-35 pars)

ACOT-X

NLO/NNLO

HERAPDF2.0

X

×

X

Hessian

 $\Delta \chi^2 = 1$

Polynomial

(14 pars)

TR'

NLO/NNLO

CJ15

×

Hessian

 $\Delta \chi^2 = 1.645$

Polynomial

(24 pars)

ACOT-X

NLO

Ubiali, DIS2017

ABMP16

Hessian

 $\Delta \chi^2 = 1$

Polynomial

(15 pars)

FFN (+BMST)

NLO/NNLO

As compared	to the PDF	fitting lar	ndscape

As compared to the PDF fitting lands

MMHT2014

X

Hessian

Δχ² dynamical

Chebyshev

(37 pars)

TR'

NLO/NNLO

NNPDF3.0

Monte Carlo

Neural Networks

(259 pars)

FONLL

NLO/NNLO

April 2017

Fixed Target DIS

JLAB

HERA I+II

HERA jets

Fixed Target DY

Tevatron W,Z

Tevatron jets

LHC jets

LHC vector boson

LHC top

Stat. treatment

Parametrization

HQ scheme

Order

As compared to th	le PDF fittir	na lanc	scape
-------------------	---------------	---------	-------

What HION questions could top production elucidate?

- What happens to the gluon density in nuclei?
- How the **confined** hadronic states emerge from partons?
 - impact of ~0.5 GeV* on the top mass (Mtoρ) reconstruction
 - CR is modified in higher color charge density regimes wrt. to the vacuum
 - e.g., in pA/AA collisions with increased UE activity
- How color-charged partons, and colorless jets, interact with a nuclear medium?

A tomography of in-medium losses

Idea for a perfect yocto-chronometer!

Knowing the energy loss, it is possible to build the density evolution profile of the medium!

The RPDPD differentially

Nuclear modification factor RPDP for tt production in the dilepton channels with the central PDF sets of CT10+EPS09 as a function of lepton rapidity