Light neutral meson production in the era of precision physics at the LHC

Mike Sas
ALICE Collaboration
Utrecht University & NIKHEF

Nov 5, 2019
Big questions in heavy-ion physics

- What are the different particle production mechanisms across different system sizes?
- Can we find the onset of the QGP? → Is there a QGP droplet formed in small systems?

\[
\begin{align*}
\text{pp} & \quad N_{\text{particles}} \sim 10^1 \\
p-\text{Pb} & \quad N_{\text{particles}} \sim 10^2 \\
Pb-Pb & \quad N_{\text{particles}} \sim 10^4
\end{align*}
\]
Why measure neutral mesons?

\[\pi^0 \to \gamma\gamma, \quad \eta \to \gamma\gamma, \quad \omega \to \pi^0\gamma, \quad ... \]

- Straightforward identification \((M_{\text{inv}})\) → study the particle production mechanisms
- Main background for \(\gamma_{\text{direct}}\) → precise neutral meson measurements lead to precise \(\gamma_{\text{direct}}\) measurements

<table>
<thead>
<tr>
<th>pp</th>
<th>p–Pb</th>
<th>Pb–Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jet production</td>
<td>Cold nuclear matter effects</td>
<td>QGP effects</td>
</tr>
<tr>
<td>Underlying event studies</td>
<td>Multiplicity dependence</td>
<td>Centrality dependence</td>
</tr>
</tbody>
</table>
ALICE: Photon and event multiplicity measurements

Photon Conversion Method (PCM)

- ITS and TPC
- $|\eta| < 0.9$ and $0^\circ < \varphi < 360^\circ$
- $E_\gamma > 100$ MeV, $E_{\pi^0} > 300$ MeV
- Conversion probability $\sim 8\%$

PHOS calorimeter

- PbWO$_4$ crystals (cell size 2.2 cm x 2.2 cm, at 4.6 m)
- $|\eta| < 0.12$ and $250^\circ < \varphi < 320^\circ$
- $E_\gamma > 200$ MeV, $E_{\pi^0} > 400$ MeV

EMCal calorimeter

- Pb-scintillator towers (cell size 6 cm x 6 cm, at 4.28 m)
- EMCal: $|\eta| < 0.7$, $80^\circ < \varphi < 187^\circ$
- DCal: $0.22 < |\eta| < 0.7$, $260^\circ < \varphi < 320^\circ$
- DCal: $|\eta| < 0.7$, $320^\circ < \varphi < 327^\circ$
- $E_\gamma > 700$ MeV, $E_{\pi^0} > 1.4$ GeV

Centrality estimator V0M

- V0A: $2.8 < \eta < 5.1$, V0C: $-3.7 < \eta < -1.7$
- Measures forward multiplicity in central barrel
Neutral meson reconstruction in ALICE

Analysis strategy:

- **Reconstruct the photons**
- **Obtain the meson raw yield:** integrate M_{inv} distributions
- **Correct raw yield for efficiency, acceptance, feed-down from secondaries**
- **Combine the different reconstruction methods**
- **More differential studies**
Neutral meson reconstruction in ALICE

Analysis strategy:

1. Reconstruc the photons
2. Obtain the meson raw yield: integrate M_{inv} distributions
3. Correct raw yield for efficiency, acceptance, feed-down from secondaries
4. Combine the different reconstruction methods
5. More differential studies
Analysis strategy:

1. Reconstruct the photons
2. Obtain the meson raw yield: integrate M_{inv} distributions
3. Correct raw yield for efficiency, acceptance, feed-down from secondaries
4. Combine the different reconstruction methods
5. More differential studies
Neutral meson reconstruction in ALICE

Analysis strategy:

- Reconstruct the photons
- Obtain the meson raw yield: integrate M_{inv} distributions
- Correct raw yield for efficiency, acceptance, feed-down from secondaries
- Combine the different reconstruction methods
- More differential studies
Analysis strategy:

- Reconstruct the photons
- Obtain the meson raw yield: integrate M_{inv} distributions
- Correct raw yield for efficiency, acceptance, feed-down from secondaries
- Combine the different reconstruction methods
- More differential studies

- vs. event multiplicity

- vs. event shape: $0 < S_T < 1$
 - Pencil-like: $S_T \approx 0$
 - Spherical: $S_T \approx 1$

- In-jet production

 - Reconstruct neutral mesons inside charged jets
 - Algorithm: anti-k_t, $R = 0.4$, $E > 10$ GeV
Neutral mesons in pp collisions

Main reasons for study:
- Fragmentation
- Contribution underlying event
- Main background for γ_{direct}
Neutral mesons in pp collisions

Main reasons for study:
- Fragmentation
- Contribution underlying event
- Main background for γ_{direct}

More differential studies:
- vs. event multiplicity
- vs. event shape: Sphericity S_T

Comparisons to predictions:
- PYTHIA overpredicts π^0, except for high multiplicity
- PYTHIA overpredicts π^0 pencil-like events, underpredicts spherical events
- η/π^0 significantly modified for the in-jet production
Neutral mesons in pp collisions

Main reasons for study:
- Fragmentation
- Contribution underlying event
- Main background for γ_{direct}

More differential studies:
- vs. event multiplicity
- vs. event shape: Sphericity S_T
- In-jet production

Comparisons to predictions:
- PYTHIA overpredicts π^0, except for high multiplicity
- PYTHIA overpredicts π^0 pencil-like events, underpredicts spherical events
- η/π^0 significantly modified for the in-jet production
Neutral mesons in p–Pb collisions

π⁰ & η

![Graph showing π⁰ and η distributions in p–Pb collisions](image1)

Ratio to theory

![Graph comparing theory predictions to data](image2)

η/π⁰

![Graph showing ratio of η to π⁰](image3)

Minimum Bias production

- Model comparisons show only consistency for limited p_T ranges
- Full Run 1 + Run 2 data will improve the results precision

Neutral mesons in p–Pb collisions

Multiplicty dependent production

- No significant centrality dependence in the η/π^0 ratio
- Q_{pA} shows significant change of slope at low p_T

Mike Sas (Utrecht University & NIKHEF)
Neutral mesons in p–Pb collisions

Nuclear modification factor:

\[Q_{pA} = \frac{dN_{pA}^{pA}}{dT_{pA}} / \left(T_{pA} \right) \]

\[\left(\frac{d\sigma^{pp}}{dp_T} \right) \]

Multiplicity dependent production

- No significant centrality dependence in the \(\eta/\pi^0 \) ratio
- \(Q_{pA} \) shows significant change of slope at low \(p_T \)
Neutral mesons in Pb–Pb collisions

Multiplicity dependent production

- Precise spectra over large momentum range
- Main background for direct photon analysis
- η/π^0 shows significant modification for non-peripheral collisions
- R_{AA} shows strong suppression for central collisions
Neutral mesons in Pb–Pb collisions

Multiplicity dependent production
- Precise spectra over large momentum range
- Main background for direct photon analysis
- η/π^0 shows significant modification for non-peripheral collisions
- R_{AA} shows strong suppression for central collisions
Neutral mesons in Pb–Pb collisions

Nuclear modification factor:

\[R_{AA} = \frac{dN_{AA}}{dp_T} \frac{<T_{AA}>}{d\sigma_{pp}/dp_T} \]

Multiplicity dependent production

- Precise spectra over large momentum range
- Main background for direct photon analysis
- \(\eta/\pi^0 \) shows significant modification for non-peripheral collisions
- \(R_{AA} \) shows strong suppression for central collisions
Neutral mesons in Pb–Pb collisions

Multiplicity dependent production
- Precise spectra over large momentum range
- Main background for direct photon analysis
- η/π^0 shows significant modification for non-peripheral collisions
- R_{AA} shows strong suppression for central collisions

Nuclear modification factor:

$$R_{AA} = \frac{dN^{AA}/dp_T}{<T_{AA}> d\sigma^{pp}/dp_T}$$
Neutral mesons spectra measurements provide us with:

- Benchmark for all photon analyses in ALICE
- Information on particle production mechanisms using detailed comparisons to model calculations
- Decay photon background for direct photon measurements
Summary and outlook

Neutral mesons spectra measurements provide us with:

- Benchmark for all photon analyses in ALICE
- Information on particle production mechanisms using detailed comparisons to model calculations
- Decay photon background for direct photon measurements

What is next?

1. Build a consistent picture for light neutral meson production
2. Direct photons \(\rightarrow \) **under which conditions do we measure an excess of low \(p_T \) direct photons?**
Summary and outlook

Neutral mesons spectra measurements provide us with:
- Benchmark for all photon analyses in ALICE
- Information on particle production mechanisms using detailed comparisons to model calculations
- Decay photon background for direct photon measurements

What is next?
1. Build a consistent picture for light neutral meson production
2. Direct photons \rightarrow under which conditions do we measure an excess of low p_T direct photons?

Thanks for your attention.
The ALICE detector

- ITS
- TPC
- EMCal
- PHOS