# The science case for a small system scan at RHIC 


arXiv: 1901.10415

Shengli Huang ${ }^{1}$, Zhenyu Chen ${ }^{2}$, Wei Li ${ }^{3}$ and Jiangyong Jia ${ }^{1}$<br>${ }^{1}$ Stony Brook University, Stony Brook, USA<br>${ }^{2}$ Shandong University, Qingdao, China<br>${ }^{3}$ Rice University, Houston, USA

## Abstract

The observation of multi-particle azimuthal correlations in high-energy small-system collisions has led to intense debate on its physical origin between two competing theoretical scenarios: one based on initial-state intrinsic momentum anisotropy (ISM), the other based on final-state collective response to the collision geometry (FSM). To complement the previous scan of asymmetric collision systems ( $p+A u, d+A u$ and $\mathrm{He}+\mathrm{Au}$ ), we propose a scan of small symmetric collision systems at RHIC, such as $C+C, O+O, A l+A l$ and $A r+A r$ at 0.2 TeV , to further disentangle contributions from these two scenarios.


System scan of intermediate AA collision systems provides unique insights on

- Whether flow harmonics reflect initial geometry from small to large systems
- At what system size the initial-state effects become sub-dominant
- Turn-on of jet-quenching and Heavy Flavor "thermalization" with system size

- Symmetric systems: $\mathrm{v}_{2}$ increases and then decrease with increasing $\left\langle\mathrm{N}_{\mathrm{ch}}\right\rangle$, the peak positions also increase slightly for larger systems.
- Asymmetric systems: $\mathrm{v}_{2}$ increase with increasing $\left\langle\mathrm{N}_{\mathrm{ch}}\right\rangle$.
- $v_{3}$ for all systems follow common increasing trend as function of $\left.<\mathrm{N}_{\mathrm{ch}}\right\rangle$.


## Symmetric vs Asymmetric systems



For systems with approximately same $<\mathrm{N}_{\text {part }}>$, the symmetric system has a flatter shoulder than that for the asymmetric system, which thus is expected to be less sensitive to experimental centrality resolution effects.

RHIC \& LHC synergy


An O+O run at RHIC right after BES-II would provide a timely collision comparison of small system at very different collision energies to study systems with nearly identical nucleon geometry but different sub-nucleon fluctuations and particle production mechanism with different saturation scale and min-jet production in the initial state.


## Summary

A scan of small A+A systems at RHIC top energy 200 GeV has been proposed to understand the timescale for the emergence of collectivity and early thermalization mechanisms in nucleus-nucleus collisions. Comparing to asymmetric systems with similar $\mathrm{N}_{\text {part }}$, the symmetric systems have different initial geometry fluctuations and less bias on the centrality selection. A scan of both symmetric and asymmetric systems provide an opportunity to disentangle contributions to collectivity from initial momentum anisotropy, pre-equilibrium and late-time dynamics.

