The science case for a small system scan at RHIC

arXiv: 1901.10415

Shengli Huang¹, Zhenyu Chen², Wei Li³ and Jiangyong Jia¹ ¹Stony Brook University, Stony Brook, USA ²Shandong University, Qingdao, China ³Rice University, Houston, USA

Abstract

The observation of multi-particle azimuthal correlations in high-energy small-system collisions has led to intense debate on its physical origin between two competing theoretical scenarios: one based on initial-state intrinsic momentum anisotropy (ISM), the other based on final-state collective response to the collision geometry (FSM). To complement the previous scan of asymmetric collision systems (p+Au, d+Au and He+Au), we propose a scan of small symmetric collision systems at RHIC, such as C+C, O+O, Al+Al and Ar+Ar at 0.2 TeV, to further disentangle contributions from these two scenarios.

System scan of intermediate AA collision systems provides unique insights on

- Whether flow harmonics reflect initial geometry from small to large systems
- At what system size the initial-state effects become sub-dominant
- Turn-on of jet-quenching and Heavy Flavor "thermalization" with system size

For systems with approximately same <N_{part}>, the symmetric system has a flatter shoulder than that for the asymmetric system, which thus is expected to be less sensitive to experimental centrality resolution effects.

- Symmetric systems: v_2 increases and then decrease with increasing $\langle N_{ch} \rangle$, the peak positions also increase slightly for larger systems.
- Asymmetric systems: v₂ increase with increasing <N_{ch}>.
- v_3 for all systems follow common increasing trend as function of $\langle N_{ch} \rangle$.

An O+O run at RHIC right after BES-II would provide a timely collision comparison of small system at very different collision energies to study systems with nearly identical nucleon geometry but different sub-nucleon fluctuations and particle production mechanism with different saturation scale and min-jet production in the initial state.

100	200	1 week^2	O+O	200M (central)	3	8	
2021							
Single-Beam	$\sqrt{s_{NN}}$ (GeV)	Run Time	Species	Events	Priority	Sequence	
Energy (GeV/n)	•			(MinBias)			
3.85	7.7	12 weeks	Au+Au	100M	1	1	
8.35	16.7	5 weeks	Au+Au	250M	2	2	
100	200	1 week^4	0+0	400M 200M (central)	2	3	

- Precise measurements of key observables can be made with proposed statistics Phi meson v_2 in central collisions
- v₂ from multi-particle correlations

Summary

A scan of small A+A systems at RHIC top energy 200 GeV has been proposed to understand the timescale for the emergence of collectivity and early thermalization mechanisms in nucleus-nucleus collisions. Comparing to asymmetric systems with similar N_{part}, the symmetric systems have different initial geometry fluctuations and less bias on the centrality selection. A scan of both symmetric and asymmetric systems provide an opportunity to disentangle contributions to collectivity from initial momentum anisotropy, pre-equilibrium and late-time dynamics.