The science case for a small system scan at RHIC

Shengli Huang, Zhenyu Chen, Wei Li, and Jiangyong Jia
1Stony Brook University, Stony Brook, USA
2Shandong University, Qingdao, China
3Rice University, Houston, USA

Abstract

The observation of multi-particle azimuthal correlations in high-energy small-system collisions has led to intense debate on its physical origin between two competing theoretical scenarios: one based on initial-state intrinsic momentum anisotropy (ISM), the other based on final-state collective response to the collision geometry (FSM). To complement the previous scan of asymmetric collision systems (p+Au, d+Au and He+Au), we propose a scan of small symmetric collision systems at RHIC, such as C+C, O+O, Al+Al and Ar+Ar at 0.2 TeV, to further disentangle contributions from these two scenarios.

Motivation

System scan of intermediate AA collision systems provides unique insights on
• Whether flow harmonics reflect initial geometry from small to large systems
• At what system size the initial-state effects become sub-dominant
• Turn-on of jet-quenching and Heavy Flavor “thermalization” with system size

Symmetric vs Asymmetric systems

For systems with approximately same \(N_{\text{part}}\), the symmetric system has a flatter shoulder than that for the asymmetric system, which thus is expected to be less sensitive to experimental centrality resolution effects.

\[v_2 \text{ & } v_3 \text{ for different systems} \]

- Symmetric systems: \(v_2 \) increases and then decrease with increasing \(N_{\text{part}} \), the peak positions also increase slightly for larger systems.
- Asymmetric systems: \(v_2 \) increase with increasing \(N_{\text{part}} \).
- \(v_3 \) for all systems follow common increasing trend as function of \(N_{\text{part}} \).

\[\text{RHIC & LHC synergy} \]

An O+O run at RHIC right after BES-II would provide a timely comparison of small system at very different collision energies to study systems with nearly identical nucleon geometry but different sub-nucleon fluctuations and particle production mechanism with different saturation scale and min-jet production in the initial state.

\[\text{STAR Beam User Request Proposal} \]

Precise measurements of key observables can be made with proposed statistics
• \(\Phi \) meson \(v_2 \) in central collisions
• \(v_3 \) from multi-particle correlations

Summary

A scan of small A+A systems at RHIC top energy 200 GeV has been proposed to understand the timescale for the emergence of collectivity and early thermalization mechanisms in nucleus-nucleus collisions. Comparing to asymmetric systems with similar \(N_{\text{part}} \), the symmetric systems have different initial geometry fluctuations and less bias on the centrality selection. A scan of both symmetric and asymmetric systems provide an opportunity to disentangle contributions to collectivity from initial momentum anisotropy, pre-equilibrium and late-time dynamics.