Quantum dissipation in the quarkonium evolution by Lindblad master equation

Ref. arXiv 1908.06293

<u>Takahiro Miura</u>, Yukinao Akamatsu, Masayuki Asakawa (Osaka University), Alexander Rothkopf (University of Stavanger)

1. Motivation

■ Suppression of quarkonium yields CMS Collaboration(19)

- Properties of QGP can be diagnosed by studying quarkonium evolution in QGP
- How do we formulate and study this phenomenon?

2.Framework

- Open quantum system approach
 - → Extract quarkonium information by integrating out QGP

• Lindblad form of master equation

$$\partial_t \rho_{Qar{Q}} = \mathcal{L} \rho_{Qar{Q}}$$
 Liouville operator

$$\partial_t \rho_{Q\bar{Q}} = -i[H'_{Q\bar{Q}}, \rho_{Q\bar{Q}}] + \int dk \{2L_k \rho_{Q\bar{Q}} L_k^\dagger - \rho_{Q\bar{Q}} L_k^\dagger L_k - L_k^\dagger L_k \rho_{Q\bar{Q}}\}$$

 $\begin{array}{ll} \checkmark \text{ Properties} & \boxed{1. & \operatorname{Tr}[\rho_{Q\bar{Q}}] \equiv 1} \\ 2. & \rho_{Q\bar{Q}} = \rho_{Q\bar{Q}}^{\dagger} \\ 3. & \langle^{\forall}\alpha|\,\rho_{Q\bar{Q}}\,|\alpha\rangle \geq 0 \ \Rightarrow \text{probabilistic interpretation} \end{array}$

Kinds of interacting forces

$$\mathcal{L} = \text{(Debye potential)} + \text{(thermal fluctuation)} + \text{(quantum dissipation)} + \text{(stochastic Potential model [Kajimoto+ (18)]}$$

How does quantum dissipation affect quarkonium fate?

3.Quantum State Diffusion method

Lindblad operator for the relative motion

$$L_k^r = \sqrt{\frac{D(k)}{2}} \left[\left\{ 1 - \frac{k}{4MT} \left(\frac{P_{CM}}{2} + \hat{p} \right) \right\} e^{ik\hat{r}/2} - \left\{ 1 - \frac{k}{4MT} \left(\frac{P_{CM}}{2} - \hat{p} \right) \right\} e^{-ik\hat{r}/2} \right]$$

momentum transfer heavy quark sector frequency thermal fluctuation

anti heavy quark sector quantum dissipation heavy quark recoil

• Quantum State Diffusion method

term

Density matrix in Lindblad master equation can be reconstructed by ensemble average of wave function $\rho_{\mathbf{Q}\bar{\mathbf{Q}}} = M[|\psi\rangle\,\langle\psi|]$

Nonlinear Schroedinger eq. in QSD

✓ less numerical cost in vector form than in matrix form

4. Numerical Outline and Results

$$H = \frac{p^2}{M} - \frac{\alpha}{r} e^{-m_D r} \qquad N_i = \int dx dy \, \phi_i^*(x) \rho(x, y) \phi_i(y)$$

Bjorken expanding QGP $\rightarrow H = \frac{p^2}{M_b} - \frac{\alpha}{r} + \sigma r$ $\sigma = 0.01 M_b^2$ vacuum eigenstate $\phi_i(x)$

Bjorken expanding QGP

<u>setup</u>

• With heavy quark diffusion constant fixed [Miura+ in progress]

5.Summary

- ☐ Dissipative effects on quarkonium relative motion
- □ Suppression pattern as a measure of gluon correlation length
- \triangleright Future work SU(3) color effect + 3D simulation