Quarkonia production in pPb collisions at LHCb Jana Crkovská on behalf of the LHCb Collaboration Los Alamos National Lab, NM USA | jana.crkovska@cern.ch #### LHCb Detector Single arm forward spectrometer fully instrumented in $2 < \eta < 5$. LHCb collected data in 2016 for both pPb and Pbp configurations, which cover $x_{Pb} \sim 10^{-6}$ and $x_{Pb} \sim 10^{-2}$ respectively. ## Prompt & non-prompt J/ψ and $\psi(2S)$ production LHCb measured nuclear modification of $J/\psi \to \mu^+\mu^-$ in pPb collisions at $\sqrt{s_{NN}}=8.16$ and 5.02 TeV [1, 2]: $$R_{\mathrm{pPb}}(p_{\mathrm{T}}, y) = \frac{1}{208} \frac{\mathrm{d}^2 \sigma_{\mathrm{pPb}}/\mathrm{d}p_{\mathrm{T}} \mathrm{d}y}{\mathrm{d}^2 \sigma_{\mathrm{pp}}/\mathrm{d}p_{\mathrm{T}} \mathrm{d}y}.$$ - Suppression pattern described by calculations including modifications of nPDFs and coherent energy loss. - No evidence of strong energy dependence of Cold Nuclear Matter (CNM) effects at the LHC energy scales. $\psi(2S) \rightarrow \mu^{+}\mu^{-}$ has been measured in pPb at $\sqrt{s_{\rm NN}} = 5.02$ TeV [3]. ► Stronger suppression of $\psi(2S)$ compared to J/ψ . The difference between the two $c\bar{c}$ states cannot be explained by the same initial state effects. \Rightarrow Different final-state effects. ## $\Upsilon(nS)$ production LHCb measured nuclear modification of $\Upsilon(nS) \to \mu^+ \mu^-$ in ρ Pb at $\sqrt{s_{\rm NN}} = 8.16$ and 5.02 TeV [4, 5]. The three peaks could be separated using the power of LHCb tracking. - $ightharpoonup \Upsilon(2S)$ shows hints of stronger suppression compared to $\Upsilon(1S)$. - \triangleright $\Upsilon(3S)$ clearly shows stronger suppression at backward rapidity. In general, the suppression of excited quarkonia cannot be described with the same initial-state effects as the ground state. ## Outlook on quarkonia measurements in pPb LHCb studied production of χ_{c0} , χ_{c1} , and χ_{c2} in pp collisions from their decays to $\chi_{cJ} \to J/\psi \gamma$. The cross-section ratio $\sigma(\chi_{c2})/\sigma(\chi_{c1})$ was measured in pp at $\sqrt{s}=7$ TeV using calorimetric photons or photons converted in the detector material ($\gamma \to e^+e^-$) [6, 7]. | | mass (MeV) | $\Delta M(\chi_{cJ} - \mathrm{J}/\psi)$ (MeV) | width (MeV) | |-------------|--------------------|---|-----------------| | χ_{c0} | 3414.71 ± 0.30 | 317.81 ± 0.03 | 10.5 ± 0.8 | | χ_{c1} | 3510.67 ± 0.05 | $\textbf{413.77} \pm \textbf{0.01}$ | 0.88 ± 0.05 | | χ_{c2} | 3556.17 ± 0.07 | 459.27 ± 0.01 | 2.00 ± 0.11 | Table: Basic characteristics of χ_{cJ} states [8]. In pPb, the measurement presents another probe of CNM effects, as the masses of χ_{cJ} states lie between J/ψ and $\psi(2S)$, and the mass difference between $M(\chi_{c2}) - M(\chi_{c1}) \approx 50$ MeV. Does also the suppression lie between J/ψ and $\psi(2S)$? Are the χ_{c2} more suppressed than χ_{c1} ? Furthermore, to control the J/ψ feed-down channel $\chi_{cJ} \to J/\psi \gamma$ is important in order to correctly determine the direct J/ψ production. Analysis of $\sigma(\chi_{c2})/\sigma(\chi_{c1})$ in 2016 pPb data is ongoing. LHCb tracking allows separation of the two χ_c peaks using converted photons even in a nuclear environment (left plot). On the other hand calorimeters provide larger statistics (right plot). ### Acknowledgements This work is supported by the US Department of Energy (DOE) Office of Science/Office of Nuclear Physics. ### References - [1] LHCb Coll. PLB 774 (2017) 159. - [2] LHCb Coll. JHEP 02 (2014) 72. - [3] LHCb Coll. JHEP 03 (2016) 133. - [4] LHCb Coll. JHEP 11 (2018) 194. - [5] LHCb Coll. JHEP 07 (2014) 94. - [6] LHCb Coll. PLB 714 (2012) 215. - [7] LHCb Coll. JHEP 10 (2013) 115. - [8] PDG Coll. PRD 98 (2018) 030001.