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LHCb Detector
Single arm forward spectrometer fully instrumented in 2 < η < 5.

LHCb collected data in 2016 for both pPb and Pbp configurations,
which cover xPb ∼ 10−6 and xPb ∼ 10−2 respectively.

Prompt & non-prompt J/ψ and ψ(2S) production
LHCb measured nuclear modification of J/ψ → µ+µ− in pPb
collisions at

√
sNN = 8.16 and 5.02 TeV [1, 2]:

RpPb(pT, y) =
1

208
d2σpPb/dpTdy
d2σpp/dpTdy

.

I Suppression pattern described by calculations including
modifications of nPDFs and coherent energy loss.

I No evidence of strong energy dependence of Cold Nuclear Matter
(CNM) effects at the LHC energy scales.
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ψ(2S) → µ+µ− has been measured in pPb at
√

sNN = 5.02 TeV [3].
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I Stronger suppression of ψ(2S) compared to J/ψ.

The difference between the two cc̄ states cannot be explained by
the same initial state effects. ⇒ Different final-state effects.

Υ(nS) production
LHCb measured nuclear modification of Υ(nS) → µ+µ− in pPb at√

sNN = 8.16 and 5.02 TeV [4, 5]. The three peaks could be
separated using the power of LHCb tracking.
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I Υ(2S) shows hints of stronger suppression compared to Υ(1S).
I Υ(3S) clearly shows stronger suppression at backward rapidity.

In general, the suppression of excited quarkonia cannot be
described with the same initial-state effects as the ground state.

Outlook on quarkonia measurements in pPb
LHCb studied production of χc0, χc1, and χc2 in pp collisions from their
decays to χcJ → J/ψγ. The cross-section ratio σ(χc2)/σ(χc1) was
measured in pp at

√
s = 7 TeV using calorimetric photons or photons

converted in the detector material (γ → e+e−) [6, 7].

Table: Basic characteristics of χcJ states [8].

In pPb, the measurement presents another probe of CNM effects, as
the masses of χcJ states lie between J/ψ and ψ(2S), and the mass
difference between M(χc2) −M(χc1) ≈ 50 MeV.

Does also the suppression lie between J/ψ and ψ(2S)?
Are the χc2 more suppressed than χc1?

Furthermore, to control the J/ψ feed-down channel χcJ → J/ψγ is
important in order to correctly determine the direct J/ψ production.

Analysis of σ(χc2)/σ(χc1) in 2016 pPb data is ongoing.
LHCb tracking allows separation of the two χc peaks using converted
photons even in a nuclear environment (left plot). On the other hand
calorimeters provide larger statistics (right plot).
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