

Quarkonia production in pPb collisions at LHCb

Jana Crkovská on behalf of the LHCb Collaboration

Los Alamos National Lab, NM USA | jana.crkovska@cern.ch

LHCb Detector

Single arm forward spectrometer fully instrumented in $2 < \eta < 5$.

LHCb collected data in 2016 for both pPb and Pbp configurations, which cover $x_{Pb} \sim 10^{-6}$ and $x_{Pb} \sim 10^{-2}$ respectively.

Prompt & non-prompt J/ψ and $\psi(2S)$ production

LHCb measured nuclear modification of $J/\psi \to \mu^+\mu^-$ in pPb collisions at $\sqrt{s_{NN}}=8.16$ and 5.02 TeV [1, 2]:

$$R_{\mathrm{pPb}}(p_{\mathrm{T}}, y) = \frac{1}{208} \frac{\mathrm{d}^2 \sigma_{\mathrm{pPb}}/\mathrm{d}p_{\mathrm{T}} \mathrm{d}y}{\mathrm{d}^2 \sigma_{\mathrm{pp}}/\mathrm{d}p_{\mathrm{T}} \mathrm{d}y}.$$

- Suppression pattern described by calculations including modifications of nPDFs and coherent energy loss.
- No evidence of strong energy dependence of Cold Nuclear Matter (CNM) effects at the LHC energy scales.

 $\psi(2S) \rightarrow \mu^{+}\mu^{-}$ has been measured in pPb at $\sqrt{s_{\rm NN}} = 5.02$ TeV [3].

► Stronger suppression of $\psi(2S)$ compared to J/ψ .

The difference between the two $c\bar{c}$ states cannot be explained by the same initial state effects. \Rightarrow Different final-state effects.

$\Upsilon(nS)$ production

LHCb measured nuclear modification of $\Upsilon(nS) \to \mu^+ \mu^-$ in ρ Pb at $\sqrt{s_{\rm NN}} = 8.16$ and 5.02 TeV [4, 5]. The three peaks could be separated using the power of LHCb tracking.

- $ightharpoonup \Upsilon(2S)$ shows hints of stronger suppression compared to $\Upsilon(1S)$.
- \triangleright $\Upsilon(3S)$ clearly shows stronger suppression at backward rapidity.

In general, the suppression of excited quarkonia cannot be described with the same initial-state effects as the ground state.

Outlook on quarkonia measurements in pPb

LHCb studied production of χ_{c0} , χ_{c1} , and χ_{c2} in pp collisions from their decays to $\chi_{cJ} \to J/\psi \gamma$. The cross-section ratio $\sigma(\chi_{c2})/\sigma(\chi_{c1})$ was measured in pp at $\sqrt{s}=7$ TeV using calorimetric photons or photons converted in the detector material ($\gamma \to e^+e^-$) [6, 7].

	mass (MeV)	$\Delta M(\chi_{cJ} - \mathrm{J}/\psi)$ (MeV)	width (MeV)
χ_{c0}	3414.71 ± 0.30	317.81 ± 0.03	10.5 ± 0.8
χ_{c1}	3510.67 ± 0.05	$\textbf{413.77} \pm \textbf{0.01}$	0.88 ± 0.05
χ_{c2}	3556.17 ± 0.07	459.27 ± 0.01	2.00 ± 0.11

Table: Basic characteristics of χ_{cJ} states [8].

In pPb, the measurement presents another probe of CNM effects, as the masses of χ_{cJ} states lie between J/ψ and $\psi(2S)$, and the mass difference between $M(\chi_{c2}) - M(\chi_{c1}) \approx 50$ MeV.

Does also the suppression lie between J/ψ and $\psi(2S)$? Are the χ_{c2} more suppressed than χ_{c1} ?

Furthermore, to control the J/ψ feed-down channel $\chi_{cJ} \to J/\psi \gamma$ is important in order to correctly determine the direct J/ψ production.

Analysis of $\sigma(\chi_{c2})/\sigma(\chi_{c1})$ in 2016 pPb data is ongoing. LHCb tracking allows separation of the two χ_c peaks using converted photons even in a nuclear environment (left plot). On the other hand calorimeters provide larger statistics (right plot).

Acknowledgements

This work is supported by the US Department of Energy (DOE) Office of Science/Office of Nuclear Physics.

References

- [1] LHCb Coll. PLB 774 (2017) 159.
- [2] LHCb Coll. JHEP 02 (2014) 72.
- [3] LHCb Coll. JHEP 03 (2016) 133.
- [4] LHCb Coll. JHEP 11 (2018) 194.
- [5] LHCb Coll. JHEP 07 (2014) 94.
- [6] LHCb Coll. PLB 714 (2012) 215.
- [7] LHCb Coll. JHEP 10 (2013) 115.
- [8] PDG Coll. PRD 98 (2018) 030001.