

Bottom and Charm production in p+p collisions at \sqrt{s} = 200 GeV measured by PHENIX

Julia Velkovska Vanderbilt University for the PHENIX Collaboration

Motivation

Heavy quarks (b and c) produced in heavy ion collisions at RHIC are excellent probes of the Quark Gluon Plasma (QGP) since:

- they cannot be produced thermally in the QGP
- they interact via the strong force with the colored QGP medium
- their yields can probe the parton energy loss mechanism in QGP and its mass dependence

Measurements of separated charm and beauty in p+p collisions provide a baseline for heavy ion collisions, and test pQCD calculations.

Experimental Methods

long lifetime → displaced decay vertex **Reconstructed in Silicon Vertex Detectors**

Forward rapidity(1.2< $|\eta|$ <2.2): muon id detectors

Signal extraction: D/B-> e

- 1. Measure the DCA_T distribution of hadrons and electrons candidate tracks in data Model the *DCA_T* distribution of non-heavy-flavor electrons: π^0 , η , direct γ , J/ ψ , K0, K^{+/-}
- 3. Determine the fraction of electrons attributable to each of the background sources considered
- 4. Bayesian unfolding to extract D/B hadron spectra based on DCA_T distributions, and the invariant yield of inclusive heavy-flavor electrons.
- 5. Refold to get the electron spectra from charm and beauty

Signal extraction: B-> J/ψ

DCA_R distributions can be fitted using signal and background templates to extract fraction of events $B \rightarrow J/\psi$ in the inclusive J/ψ yield.

Results

- \clubsuit Heavy flavor electron spectra from D and B decays measured in p+p collisions at \sqrt{s} =200 GeV at mid-rapidity
- ❖ D and B hadron spectra extracted via Bayesian unfolding
- The non-prompt J/ ψ contribution (from B \rightarrow J/ ψ) to the inclusive J/ ψ yield measured in forward rapidities
- ❖ Results consistent with FONLL calculations given the large theoretical uncertainties [3]
- * Experimental results provide a more precise reference to assess heavy-flavor modifications in heavy ion collisions

Research supported in part by

References

- Measurement of charm and bottom production from semi-leptonic hadron decays in p+p collisions at √s=200 GeV, PHENIX, Phys. Rev. D 99, 092003 (2019)
- B-meson production at forward and backward rapidity in p + p and Cu + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV, PHENIX, Phys. Rev. C 96, 064901 (2017)
- 3. Theoretical predictions for charm and bottom production at the LHC, Cacciari, M., Frixione, S., Houdeau, N. et al., J. High Energ. Phys. (2012) 2012: 137