Constraining the initial stages of heavy-ion collisions with high- p_{\perp} theory and data

Bojana Ilic¹ (Blagojevic), Dusan Zigic¹, Marko Djordjevic², Magdalena Djordjevic¹

¹Institute of Physics Belgrade, University of Belgrade, Belgrade, Serbia ²Institute of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia

Fig. 2: Four common IS cases with the same T_0 value, which differ only before thermalization.

Abstract

raditionally, low- p_{\perp} sector is used to infer the features of initial stages before QGP thermalization. On the other hand, recently acquired wealth of high- p_{\perp} experimental data paves the way to utilize the high- p_{\perp} particles energy loss in exploring the initial \perp stages. We here study how four different commonly considered initial-stage scenarios – which have the same temperature profile before thermalization – affect predictions of high- p_{\perp} R_{AA} and v_2 observables. Contrary to common expectations, we obtain that **high-** p_{\perp} v_2 **is insensitive** to the initial conditions. On the other hand, **high-** p_{\perp} R_{AA} **is sensitive** to these stages, however, within the current error bars, the sensitivity is not sufficient to distinguish between different initial stages. Moreover, we also reconsider the validity of widely-used procedure of fitting the energy loss parameters, individually for each initial-stage case, to reproduce the experimentally observed R_{AA} . We here find that previously reported sensitivity of v_2 to different initial stages is mainly an artifact of the R_{AA} fitting procedure, which may lead to incorrect conclusions. On the other hand, if a global property, in particular the same average temperature, is imposed to test temperature profiles, high sensitivity of high- p_{\perp} v₂ is again obtained. We however show that this sensitivity would **not** be **a consequence of** differences in **initial**, **but rather final**, **stages**. Consequently, the simultaneous study of high- p_{\perp} R_{AA} and v_2 , with consistent energy loss parameters throughout the study and rigorously controlled temperature profiles, is necessary to assess sensitivity of different variables to differences in initial stages.

Introduction

- Traditionally, rare **high-** p_{\perp} **probes** $(p_{\perp} \gtrsim 5 \text{ GeV})$ are utilized for studying the nature of jet-medium interactions.
- Commonly, low- p_{\perp} sector $(p_{\perp} \lesssim 5 \text{ GeV})$ is used to infer the features of initial stages (IS) before the QGP thermalization.

use high- p_{\perp} probes as a complementary tool for this purpose, because:

- High- p_{\perp} partons effectively probe QGP properties, which in turn depend on initial QGP stages. • Recently a wealth of high- p_{\perp} experimental data became available.
- This issue is moreover intriguing, as results of current theoretical studies on this subject are questionable, e.g., the energy loss parameters were fitted to reproduce the experimental R_{AA} data, individually for different analyzed temperature (T) profiles.

Therefore, more rigorous study on this issue is required, which implies higher control over both the energy loss and the analyzed T profiles.

Theoretical Framework

For higher control over the energy loss and IS we employ **full-fledged DREENA-B framework** (no fitting parameters), because:

- Bjorken 1+1D:
 - Allows analytical introduction of **different evolutions before**, and **the same evolution after thermalization**.
 - Facilitates the **isolation of IS effects** alone.
 - Presents a **reasonable description of medium evolution** (compared to 3+1D hydrodynamical evolution, [M. Djordjevic *et al.*, In Preparation]).
- Dynamical energy loss formalism:
 - State-of-the-art and complex, enclosing some unique realistic features.
- Dominant ingredient for generating high- p_{\perp} predictions.

We introduce four commonly considered **IS** cases, which have the same 1+1D Bjorken T profile upon thermalization, but differ for $\tau < \tau_0 = 0.6$ fm:

Sensitivity of high- p_{\perp} R_{AA} and v_2 to the Initial Stages

Sensitivity of high- p_{\perp} R_{AA} and v_2 to Modified Temperature Profiles

Sensitivity of Fitted high- p_{\perp} R_{AA} and v_2 to Initial Stages

Tab. 1: Fitting factors values

Common approach: Fitting the energy loss through the change of multiplicative

1.0 8.0 48.0 A free streaming ——— linear ---- constant 0.2 ---- divergent 80 $p_{\perp}(\text{GeV})$ $p_{\perp}(\text{GeV})$

Fig. 9: Sensitivity of fitted high- p_{\perp} observables to IS from Fig. 2.

Is this a consequence of IS, as previously reported? Inconsistent with our previous

analysis and intuitive expectations.

High- p_{\perp} v_2 is

notably affected!

i = lin, const, div $C_i, \gamma_i < 1, \gamma_i$ approaches 1 at $R_{AA,i}^{fit} \approx 1 - C_i(p_\perp)\xi \overline{T}_i^a \overline{L}_i^b$ very high p_{\perp} $R_{AAi}^{fit} = R_{AA,fs}$ Diminishing of $v_{2,i}$ compared to the fs case is predominantly consequence of a decrease in the $v_{2,i}^{fit} = C_i \gamma_i v_{2,fs}$ artificially imposed fitting factor and not IS.

• For highly energetic jets

60

 $p_{\perp}(\text{GeV})$

• For more peripheral collisions

Quantitative explanation through asymptotic scaling behavior

 $R_{AA} \approx 1 - \xi \overline{T}^a \overline{L}^b$

Conclusions and Outlook

- We studied the effects of commonly considered IS cases on high- p_{\perp} observables, and obtained that high- p_{\perp} R_{AA} is sensitive to the presumed IS. However, within the current error bars, the sensitivity is insufficient to distinguish between different initial scenarios.
- Unexpectedly, we found that high- p_{\perp} v_2 is insensitive to the IS.
- By combining full-fledged numerical predictions and analytical estimates, we inferred that previously reported sensitivity of high- p_{\perp} v_2 is mostly an artifact of the fitting procedure. All conclusions stand for all types of particles.
- Overall, the simultaneous study of high- p_{\perp} R_{AA} and v_2 , with consistent/fixed energy loss parameters across the entire study, and controlled temperature profiles, is crucial for imposing accurate constraints on the initial stages.

References and Acknowledgments

1. D. Zigic, B. Ilic, M. Djordjevic and M. Djordjevic, arXiv:1908.11866.

2. D. Zigic, I. Salom, M. Djordjevic and M. Djordjevic, Phys. Lett. B 791, 236 (2019)

- 3. J. D. Bjorken, Phys. Rev. D 27, 140 (1983)
- 4. F. Gelis and B. Schenke, Ann. Rev. Nucl. Part. Sci. 66, 73 (2016) 5. C. Andres, N. Armesto, H. Niemi, R. Paatelainen and C. A. Salgado, arXiv:1902.03231
- 7. S. Acharya et al. [ALICE Collaboration], JHEP 1807, 103; 1811, 013 (2018)
- 9. A. M. Sirunyan et al. [CMS Collaboration], Phys. Lett. B 776, 195 (2018); V. Khachatryan et al. [CMS Collaboration], JHEP 1704, 039 (2017).

This work is funded by the European Research Council, grant ERC-2016-COG:725741, and Ministry of Science and Technological Development of the Republic of Serbia, under project Nos. ON171004 and ON173052.

⋣ 0.8 ⊢ C^{fit}

Fig. 10: Comparison of fitting factors obtained from full-fledged calculations.

 $p_{\perp}(\text{GeV})$

100

 $p_{\perp}(\text{GeV})$