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Motivation 
What is the smallest possible droplet of QGP? 
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Figure 2: The v2 values as a function of N
offline
trk . Open data points are published two- and four-

particle v2 results [35]. Solid data points are v2 results obtained from six- and eight-particle
cumulants, and LYZ methods, averaged over the particle pT range of 0.3–3.0 GeV/c, in PbPb atp

sNN = 2.76 TeV (left) and pPb at psNN = 5.02 TeV (right). Statistical and systematic uncertain-
ties are indicated by the error bars and shaded regions, respectively.

in pPb collisions at psNN = 5.02 TeV. The v2{2} and v2{4} data are taken from previously pub-
lished CMS results [35]. The solid curves correspond to theoretical predictions for both large
and small systems based on hydrodynamics and the assumption that the initial-state geome-
try is purely driven by fluctuations [50]. The ratios from PbPb collisions are also shown for
comparison. Note that the geometry of very central PbPb collisions might be dominated by
fluctuations, but for these semi-peripheral PbPb collisions the lenticular shape of the overlap
region should also strongly contribute to the v2 values. The CMS pPb data are consistent with
the predictions within statistical and systematic uncertainties. The systematic uncertainties in
the ratios presented in Fig. 3 are estimated to be 2.4% for v2{4}/v2{2} for both pPb and PbPb
collisions, 1% for v2{6}/v2{4} in pPb and PbPb collisions, and 3.6% and 1% for v2{8}/v2{6}
in pPb and PbPb collisions, respectively. Since they are all derived from the same data, the
systematic uncertainties for the different cumulant orders are highly correlated and therefore
partially cancel in the ratios.

Recently, other theoretical models based on quantum chromodynamics, and not involving hy-
drodynamics, have also been suggested to explain the observed multi-particle correlations in
pPb collisions [52, 53]. Unlike the descriptions based on hydrodynamic behavior, these models
do not require significant final-state interactions among quarks and gluons. They suggest sim-
ilar values for v2{4}, v2{6}, v2{8}, and v2{LYZ}, without yet, however, providing quantitative
predictions.

In summary, multi-particle azimuthal correlations among six, eight, and all particles have been
measured in pPb collisions at psNN = 5.02 TeV by the CMS experiment. The new measure-
ments extend previous CMS two- and four-particle correlation analyses of pPb collisions and
strongly constrain possible explanations for the observed correlations. A direct comparison of
the correlation data for pPb and PbPb collisions is presented as a function of particle multi-
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•  What is the smallest Ntrk? 

•  How the nonflow affect it? 

•  How to measure 6 and more 
particle correlations at Ntrk<100? 

?? 

To understand how the nonflow 
affects multiparticle correlations, 
we propose calculating cumulants 
directly using particle azimuthal 
angles (Looping) in small systems. 
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1 Definitions, terminology, notation...

We start by introducing the quantities we will use throughout this report.

1.1 Q-vector

Q-vector evaluated in harmonic n is a complex quantity denoted by Qn and
defined as

Qn ⌘
MX

i=1

ein�i . (1)

The summation in above definition goes over all particles in an event with
multiplicity M and �i is the azimuthal angle of the i-th particle measured in
the laboratory frame.

1.2 Multi-particle azimuthal correlations

2-, 4- and 6-particle azimuthal correlations by definition are obtained through
the averaging procedure which consists of two distinct steps. First we define
the average multi-particle correlations for each event in the following way:

h2in|n ⌘ 1�
M
2

�
2!

MX

i,j=1
(i6=j)

ein(�i��j) , (2)

h4in,n|n,n ⌘ 1�
M
4

�
4!

MX

i,j,k,l=1
(i6=j 6=k 6=l)

ein(�i+�j��k��l) , (3)

1

Standard cumulant method Subevent cumulant method Current status 
To avoid using nested loops, introduce the Q-vector [1]:  
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1

3

The second step involves averaging over all events:

hh2ii ⌘
DD

ein(�1��2)
EE

⌘

X

events

(Wh2i)i h2ii
X

events

(Wh2i)i
, (7)

hh4ii ⌘
DD

ein(�1+�2��3��4)
EE

⌘

X

events

(Wh4i)i h4ii
X

events

(Wh4i)i
, (8)

where by double brackets we denote an average, first over
all particles and then over all events. Wh2i and Wh4i
are the event weights, which are used to minimize the
e↵ect of multiplicity variations in the event sample on the
estimates of 2- and 4-particle correlations. In general,
the optimal choice of weights would be determined by
the multiplicity dependence of vn. The best approach
might be to calculate the cumulants at fixed M and then
average over the entire event sample. In our calculations,
with vn independent of multiplicity, we use:

Wh2i ⌘ M(M � 1) , (9)

Wh4i ⌘ M(M � 1)(M � 2)(M � 3) . (10)

The above choice for the event weights takes into account
the number of di↵erent 2- and 4-particle combinations in
an event with multiplicity M .

The general formalism of cumulants was introduced
into flow analysis by Ollitrault et al [7–9]. We will use
below the notations from those papers. The 2nd order
cumulant, cn{2}, is simply an average of 2-particle cor-
relation defined in Eq. (7):

cn{2} = hh2ii . (11)

As was pointed out first in [8] the genuine 4-particle cor-
relation (i.e. 4-particle cumulant), is given by:

cn{4} = hh4ii � 2 · hh2ii2 . (12)

Expressions (11) and (12) are applicable only for detec-
tors with uniform acceptance and will be generalized in
Appendix C to extend their applicability for detectors
with non-uniform acceptance.

Di↵erent order cumulants provide independent esti-
mates for the same reference harmonic vn. In particu-
lar [8]:

vn{2} =
p

cn{2} , (13)

vn{4} = 4
p
�cn{4} , (14)

where the notation vn{2} is used to denote the reference
flow vn estimated from the 2nd order cumulant cn{2}, and
vn{4} stands for the reference flow vn estimated from the
4th order cumulant cn{4}.

III. REFERENCE FLOW

To obtain the 2nd order cumulant it su�ces to separate
diagonal and o↵-diagonal terms in |Qn|2:

|Qn|2 =
MX

i,j=1

ein(�i��j) = M +
X0

i,j

ein(�i��j) , (15)

which can be trivially solved to obtain h2i:

h2i = |Qn|2 �M

M(M � 1)
. (16)

The event averaging is being performed via Eq. (7). The
resulting expression for hh2ii is than used to estimate 2nd

order cumulant (see Eq. (11)), which in turn is used to
estimate the reference flow harmonic vn by making use
of Eq. (13).
To obtain the 4th order cumulant we start with the

decomposition of |Qn|4 (for details, see Appendix A)

|Qn|4 = QnQnQ
⇤
nQ

⇤
n =

MX

i,j,k,l=1

ein(�i+�j��k��l) . (17)

We have four distinct cases for the indices i, j, k and
l: 1) they are all di↵erent (4-particle correlation), 2)
three are di↵erent, 3) two are di↵erent or 4) they are
all the same. Note, that the case of three di↵erent in-
dices corresponds to the so-called mixed harmonics 3-
particle correlations, in many analyses of great interest
by itself [18, 19]. Equations for 3-particle correlations are
provided in Appendix A. Taking everything into account,
we obtain the following analytic result for the single-event
average 4-particle correlation defined in Eq. (6):

h4i = |Qn|4 + |Q2n|2 � 2 ·Re [Q2nQ⇤
nQ

⇤
n]

M(M � 1)(M � 2)(M � 3)

� 2
2(M � 2) · |Qn|2 �M(M � 3)

M(M � 1)(M � 2)(M � 3)
. (18)

The reason why the originally proposed cumulant anal-
ysis [7] was biased lies in the fact that the terms con-
sisting of Q-vectors evaluated in di↵erent harmonics (for
instance terms |Q2n|2 and Re [Q2nQ⇤

nQ
⇤
n]) have been ne-

glected. As seen from Eq. (18), such terms do appear in
the analytic results and are crucial in disentangling the
interference between harmonics. In particular, if a higher
harmonic v2n is present than |Qn|4 picks up an addi-
tional contribution depending on that harmonic, namely
v22nM(M�1)+v2nv2n2M(M�1)(M�2), which is exactly
canceled out with the contribution of harmonic v2n to
|Q2n|2 and Re [Q2nQ⇤

nQ
⇤
n], which read Mv22n(M�1) and

M(M�1)(M�2)v2nv2n+M(M�1)v22n, respectively.
The final, event averaged 4-particle azimuthal correla-

tion, hh4ii, is then obtained by making use of Eqs. (8)
and (10). Using hh4ii and hh2ii one can calculate the 4th

order cumulant from Eq. (12).
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by itself [18, 19]. Equations for 3-particle correlations are
provided in Appendix A. Taking everything into account,
we obtain the following analytic result for the single-event
average 4-particle correlation defined in Eq. (6):

h4i = |Qn|4 + |Q2n|2 � 2 ·Re [Q2nQ⇤
nQ

⇤
n]

M(M � 1)(M � 2)(M � 3)

� 2
2(M � 2) · |Qn|2 �M(M � 3)

M(M � 1)(M � 2)(M � 3)
. (18)

The reason why the originally proposed cumulant anal-
ysis [7] was biased lies in the fact that the terms con-
sisting of Q-vectors evaluated in di↵erent harmonics (for
instance terms |Q2n|2 and Re [Q2nQ⇤

nQ
⇤
n]) have been ne-

glected. As seen from Eq. (18), such terms do appear in
the analytic results and are crucial in disentangling the
interference between harmonics. In particular, if a higher
harmonic v2n is present than |Qn|4 picks up an addi-
tional contribution depending on that harmonic, namely
v22nM(M�1)+v2nv2n2M(M�1)(M�2), which is exactly
canceled out with the contribution of harmonic v2n to
|Q2n|2 and Re [Q2nQ⇤

nQ
⇤
n], which read Mv22n(M�1) and

M(M�1)(M�2)v2nv2n+M(M�1)v22n, respectively.
The final, event averaged 4-particle azimuthal correla-

tion, hh4ii, is then obtained by making use of Eqs. (8)
and (10). Using hh4ii and hh2ii one can calculate the 4th

order cumulant from Eq. (12).
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The second step involves averaging over all events:

hh2ii ⌘
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EE
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X
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X

events

(Wh4i)i h4ii
X

events

(Wh4i)i
, (8)

where by double brackets we denote an average, first over
all particles and then over all events. Wh2i and Wh4i
are the event weights, which are used to minimize the
e↵ect of multiplicity variations in the event sample on the
estimates of 2- and 4-particle correlations. In general,
the optimal choice of weights would be determined by
the multiplicity dependence of vn. The best approach
might be to calculate the cumulants at fixed M and then
average over the entire event sample. In our calculations,
with vn independent of multiplicity, we use:

Wh2i ⌘ M(M � 1) , (9)

Wh4i ⌘ M(M � 1)(M � 2)(M � 3) . (10)

The above choice for the event weights takes into account
the number of di↵erent 2- and 4-particle combinations in
an event with multiplicity M .

The general formalism of cumulants was introduced
into flow analysis by Ollitrault et al [7–9]. We will use
below the notations from those papers. The 2nd order
cumulant, cn{2}, is simply an average of 2-particle cor-
relation defined in Eq. (7):

cn{2} = hh2ii . (11)

As was pointed out first in [8] the genuine 4-particle cor-
relation (i.e. 4-particle cumulant), is given by:

cn{4} = hh4ii � 2 · hh2ii2 . (12)

Expressions (11) and (12) are applicable only for detec-
tors with uniform acceptance and will be generalized in
Appendix C to extend their applicability for detectors
with non-uniform acceptance.

Di↵erent order cumulants provide independent esti-
mates for the same reference harmonic vn. In particu-
lar [8]:

vn{2} =
p

cn{2} , (13)

vn{4} = 4
p
�cn{4} , (14)

where the notation vn{2} is used to denote the reference
flow vn estimated from the 2nd order cumulant cn{2}, and
vn{4} stands for the reference flow vn estimated from the
4th order cumulant cn{4}.

III. REFERENCE FLOW

To obtain the 2nd order cumulant it su�ces to separate
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|Qn|2 =
MX

i,j=1

ein(�i��j) = M +
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i,j
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which can be trivially solved to obtain h2i:
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M(M � 1)
. (16)

The event averaging is being performed via Eq. (7). The
resulting expression for hh2ii is than used to estimate 2nd

order cumulant (see Eq. (11)), which in turn is used to
estimate the reference flow harmonic vn by making use
of Eq. (13).
To obtain the 4th order cumulant we start with the

decomposition of |Qn|4 (for details, see Appendix A)
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instance terms |Q2n|2 and Re [Q2nQ⇤
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glected. As seen from Eq. (18), such terms do appear in
the analytic results and are crucial in disentangling the
interference between harmonics. In particular, if a higher
harmonic v2n is present than |Qn|4 picks up an addi-
tional contribution depending on that harmonic, namely
v22nM(M�1)+v2nv2n2M(M�1)(M�2), which is exactly
canceled out with the contribution of harmonic v2n to
|Q2n|2 and Re [Q2nQ⇤
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n], which read Mv22n(M�1) and

M(M�1)(M�2)v2nv2n+M(M�1)v22n, respectively.
The final, event averaged 4-particle azimuthal correla-

tion, hh4ii, is then obtained by making use of Eqs. (8)
and (10). Using hh4ii and hh2ii one can calculate the 4th
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where by double brackets we denote an average, first over
all particles and then over all events. Wh2i and Wh4i
are the event weights, which are used to minimize the
e↵ect of multiplicity variations in the event sample on the
estimates of 2- and 4-particle correlations. In general,
the optimal choice of weights would be determined by
the multiplicity dependence of vn. The best approach
might be to calculate the cumulants at fixed M and then
average over the entire event sample. In our calculations,
with vn independent of multiplicity, we use:
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below the notations from those papers. The 2nd order
cumulant, cn{2}, is simply an average of 2-particle cor-
relation defined in Eq. (7):

cn{2} = hh2ii . (11)

As was pointed out first in [8] the genuine 4-particle cor-
relation (i.e. 4-particle cumulant), is given by:

cn{4} = hh4ii � 2 · hh2ii2 . (12)

Expressions (11) and (12) are applicable only for detec-
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Appendix C to extend their applicability for detectors
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Di↵erent order cumulants provide independent esti-
mates for the same reference harmonic vn. In particu-
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flow vn estimated from the 2nd order cumulant cn{2}, and
vn{4} stands for the reference flow vn estimated from the
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all the same. Note, that the case of three di↵erent in-
dices corresponds to the so-called mixed harmonics 3-
particle correlations, in many analyses of great interest
by itself [18, 19]. Equations for 3-particle correlations are
provided in Appendix A. Taking everything into account,
we obtain the following analytic result for the single-event
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glected. As seen from Eq. (18), such terms do appear in
the analytic results and are crucial in disentangling the
interference between harmonics. In particular, if a higher
harmonic v2n is present than |Qn|4 picks up an addi-
tional contribution depending on that harmonic, namely
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The final, event averaged 4-particle azimuthal correla-

tion, hh4ii, is then obtained by making use of Eqs. (8)
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•  Need to study correlations vs. η gap 
•  Run out of statistics quickly 
•  Any solutions? 
•  Recall that the idea behind Q-cumulant 
method is to avoid using nested loops 

•  If we just loop over particle azimuthal 
angles, it is very easy to study the η gap 
dependence 
•  Also with much better statistics since it 
keeps all possible combinations 

Time complexity:  
•  O(Ntrk

n), for n particle cumulant with Ntrk total number of particles per event 
•  The 8 particle cumulant in an event with 1000 particles will take ~1 billion years 
•  However, our interest is in the small system with Ntrk less than 100 
•  It takes a few seconds to calculate the 4 particle cumulant with Ntrk=100 
•  It could be much faster after applying η gaps between particles 
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1 Definitions, terminology, notation...

We start by introducing the quantities we will use throughout this report.

1.1 Q-vector

Q-vector evaluated in harmonic n is a complex quantity denoted by Qn and
defined as

Qn ⌘
MX

i=1

ein�i . (1)

The summation in above definition goes over all particles in an event with
multiplicity M and �i is the azimuthal angle of the i-th particle measured in
the laboratory frame.

1.2 Multi-particle azimuthal correlations

2-, 4- and 6-particle azimuthal correlations by definition are obtained through
the averaging procedure which consists of two distinct steps. First we define
the average multi-particle correlations for each event in the following way:

h2in|n ⌘ 1�
M
2

�
2!

MX

i,j=1
(i6=j)

ein(�i��j) , (2)

h4in,n|n,n ⌘ 1�
M
4

�
4!

MX

i,j,k,l=1
(i6=j 6=k 6=l)

ein(�i+�j��k��l) , (3)

1
(0.5) 
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The second step involves averaging over all events:

hh2ii ⌘
DD

ein(�1��2)
EE

⌘

X

events

(Wh2i)i h2ii
X

events

(Wh2i)i
, (7)

hh4ii ⌘
DD

ein(�1+�2��3��4)
EE

⌘

X

events

(Wh4i)i h4ii
X

events

(Wh4i)i
, (8)

where by double brackets we denote an average, first over
all particles and then over all events. Wh2i and Wh4i
are the event weights, which are used to minimize the
e↵ect of multiplicity variations in the event sample on the
estimates of 2- and 4-particle correlations. In general,
the optimal choice of weights would be determined by
the multiplicity dependence of vn. The best approach
might be to calculate the cumulants at fixed M and then
average over the entire event sample. In our calculations,
with vn independent of multiplicity, we use:

Wh2i ⌘ M(M � 1) , (9)

Wh4i ⌘ M(M � 1)(M � 2)(M � 3) . (10)

The above choice for the event weights takes into account
the number of di↵erent 2- and 4-particle combinations in
an event with multiplicity M .

The general formalism of cumulants was introduced
into flow analysis by Ollitrault et al [7–9]. We will use
below the notations from those papers. The 2nd order
cumulant, cn{2}, is simply an average of 2-particle cor-
relation defined in Eq. (7):

cn{2} = hh2ii . (11)

As was pointed out first in [8] the genuine 4-particle cor-
relation (i.e. 4-particle cumulant), is given by:

cn{4} = hh4ii � 2 · hh2ii2 . (12)

Expressions (11) and (12) are applicable only for detec-
tors with uniform acceptance and will be generalized in
Appendix C to extend their applicability for detectors
with non-uniform acceptance.

Di↵erent order cumulants provide independent esti-
mates for the same reference harmonic vn. In particu-
lar [8]:

vn{2} =
p

cn{2} , (13)

vn{4} = 4
p
�cn{4} , (14)

where the notation vn{2} is used to denote the reference
flow vn estimated from the 2nd order cumulant cn{2}, and
vn{4} stands for the reference flow vn estimated from the
4th order cumulant cn{4}.

III. REFERENCE FLOW

To obtain the 2nd order cumulant it su�ces to separate
diagonal and o↵-diagonal terms in |Qn|2:

|Qn|2 =
MX

i,j=1

ein(�i��j) = M +
X0

i,j

ein(�i��j) , (15)

which can be trivially solved to obtain h2i:

h2i = |Qn|2 �M

M(M � 1)
. (16)

The event averaging is being performed via Eq. (7). The
resulting expression for hh2ii is than used to estimate 2nd

order cumulant (see Eq. (11)), which in turn is used to
estimate the reference flow harmonic vn by making use
of Eq. (13).
To obtain the 4th order cumulant we start with the

decomposition of |Qn|4 (for details, see Appendix A)

|Qn|4 = QnQnQ
⇤
nQ

⇤
n =

MX

i,j,k,l=1

ein(�i+�j��k��l) . (17)

We have four distinct cases for the indices i, j, k and
l: 1) they are all di↵erent (4-particle correlation), 2)
three are di↵erent, 3) two are di↵erent or 4) they are
all the same. Note, that the case of three di↵erent in-
dices corresponds to the so-called mixed harmonics 3-
particle correlations, in many analyses of great interest
by itself [18, 19]. Equations for 3-particle correlations are
provided in Appendix A. Taking everything into account,
we obtain the following analytic result for the single-event
average 4-particle correlation defined in Eq. (6):

h4i = |Qn|4 + |Q2n|2 � 2 ·Re [Q2nQ⇤
nQ

⇤
n]

M(M � 1)(M � 2)(M � 3)

� 2
2(M � 2) · |Qn|2 �M(M � 3)

M(M � 1)(M � 2)(M � 3)
. (18)

The reason why the originally proposed cumulant anal-
ysis [7] was biased lies in the fact that the terms con-
sisting of Q-vectors evaluated in di↵erent harmonics (for
instance terms |Q2n|2 and Re [Q2nQ⇤

nQ
⇤
n]) have been ne-

glected. As seen from Eq. (18), such terms do appear in
the analytic results and are crucial in disentangling the
interference between harmonics. In particular, if a higher
harmonic v2n is present than |Qn|4 picks up an addi-
tional contribution depending on that harmonic, namely
v22nM(M�1)+v2nv2n2M(M�1)(M�2), which is exactly
canceled out with the contribution of harmonic v2n to
|Q2n|2 and Re [Q2nQ⇤

nQ
⇤
n], which read Mv22n(M�1) and

M(M�1)(M�2)v2nv2n+M(M�1)v22n, respectively.
The final, event averaged 4-particle azimuthal correla-

tion, hh4ii, is then obtained by making use of Eqs. (8)
and (10). Using hh4ii and hh2ii one can calculate the 4th

order cumulant from Eq. (12).
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are expected to be even more susceptible to non-flow e↵ects. Therefore, more precise study of the influence of
non-flow e↵ects to these observables is required before any interpretation of the experimental measurements. Event
generators such as PYTHIA8 [19] and HIJING [20], which contain only non-flow correlations, are perfect test-ground
for estimating the influence of non-flow to symmetric cumulants in small systems, which is the focus of this paper.
Using a PYTHIA8 simulation of pp collisions and HIJING simulation of p+Pb collisions, we demonstrate that SC(n,m)
based on the standard method is dominated by non-flow in pp collisions, and is contaminated by non-flow in p+Pb
collisions. We show that reliable SC(n,m) measurements can be obtained using three-subevent or four-subevent
methods, which therefore should be the preferred methods for analyzing multi-particle correlations in small systems.

II. SYMMETRIC CUMULANTS

The framework for the standard cumulant is described in Refs. [9, 10], which was recently extended to the case
of subevent cumulants in Ref. [11, 21]. The four-particle symmetric cumulants SC(n,m) are related to two- and
four-particle azimuthal correlations for flow harmonics of order n and m, n ≠m as:

�{4}n,m� = �ein(�1−�2)+im(�3−�4)� , �{2}n� = �ein(�1−�2)� , �{2}m� = �eim(�1−�2)� , (1)

SC(n,m) = �{4}n,m� − �{2}n��{2}m� = �ein(�1−�2)+im(�3−�4)� − �ein(�1−�2)��eim(�1−�2)� . (2)

One firstly averages all distinct quadruplets or pairs in one event to obtain �{4}n,m�, �{2}n� and �{2}m�, then average
over an event ensemble to obtain �{4}n,m�, �{2}n�, �{2}m� and SC(n,m). In the absence of non-flow correlations,
SC(n,m) measures the correlation between event-by-event fluctuations of vn and vm:

SC(n,m)flow = �v2nv2m� − �v2n� �v2m� (3)

In the standard cumulant method, all quadruplets and pairs are selected using the entire detector acceptance. To
suppress the non-flow correlations that typically involve particles emitted within a localized region in ⌘, the particles
can be grouped into several subevents, each covering a non-overlapping ⌘ interval. The multi-particle correlations are
then constructed by correlating particles between di↵erent subevents, further reducing non-flow correlations.

Specifically, in the two-subevent cumulant method, the entire event is divided into two subevents, labeled as a and
b, for example according to −⌘max < ⌘a < 0 and 0 < ⌘b < ⌘max. The symmetric cumulant is defined by considering all
quadruplets comprised of two particles from each subevent, or pairs comprised of one particle from each subevent:

SC(n,m)2−sub = �ein(�a
1−�b

2)+im(�a
3−�b

4)� − �ein(�a
1−�b

2)��eim(�a
1−�b

2)� , (4)

where the superscript or subscript a (b) indicates particles chosen from the subevent a (b). The two-subevent method
suppresses correlations within a single jet (intra-jet correlations), since each jet usually emits particles to one subevent.
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�v22v4� ≈ �v42� and therefore is comparable to c2{4} and is much larger than sc2,3{4} and sc2,4{4}. In fact, ac2,2�4{3}
is a factor of 1�v4 ∼ 50 larger than sc2,4{4} in pp or p+Pb collisions, making it a superior observable to study the
multi-particle nature of collectivity in small systems.

The ATLAS results [13] on ac2,2�4{3} show a clear decrease from the standard to the two-subevent and then the
three-subevent methods, which has been interpreted as a systematic suppression of the non-flow correlations. In this
paper, we show explicitly via model simulations that this hierarchy is indeed due to a systematic suppression of the
non-flow correlations. We also extend the study to ac2,3�5{3} = �V2V3V

∗
5 �, which is the next event-plane correlator

that could be measured in experiments.
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b, for example according to −⌘max < ⌘a < 0 and 0 < ⌘b < ⌘max. The cumulant is defined by considering all triplets
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where the superscript a (b) indicates particles chosen from the subevent a (b). The two-subevent method suppresses
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PYTHIA8 [18] and HIJING [19] models are used to generate pp events at
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TeV, respectively. These models contain significant non-flow correlations from jets, dijets, and resonance decays, which
are reasonably tuned to describe the data, such as pT spectra and Nch distributions. Three-particle cumulants based
on the standard and subevent methods are calculated as a function of charged particle multiplicity Nch. To make
the results directly comparable to the ATLAS measurement [13], the cumulant analysis is carried out using charged
particles in �⌘� < ⌘max = 2.5 and 0.3 < pT < 3 GeV/c, and the Nch is defined as the number of charged particles in�⌘� < 2.5 and pT > 0.4 GeV/c.

The acn,m�n+m{3} is calculated in several steps using charged particles with �⌘� < 2.5, similar to Refs. [9, 12]. Firstly,
the correlators �{3}�n,m�n+m in Eq. 1 are calculated for each event from particles in the pT ranges, 0.3 < pT < 3 GeV/c,
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Cumulants 
Symmetric Cumulants Asymmetric Cumulants 

•  Introducing subevents makes a huge difference 
•  Looping method removes much more nonflow 

•  Looping method suppresses the nonflow for symmetric cumulants •  Not enough for ac2,2|4{3} with an eta gap > 0.8 

Conclusions 
•  Turn-on of flow is important for understanding the smallest possible droplet 
•  The looping method is introduced to suppress nonflow in small systems 
•  The method could also be used for Symmetric/Asymmetric Cumulants 
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