Simulation studies of $\mathbf{R}_{\mathbf{2}}(\Delta \boldsymbol{\eta}, \Delta \varphi)$ and $\mathbf{P}_{\mathbf{2}}(\Delta \boldsymbol{\eta}, \Delta \varphi)$ correlation functions in $\mathrm{p}-\mathrm{p}$ collisions with the PYTHIA and HERWIG models

Baidyanath Sahoo, Basanta Kumar Nandi, Prabhat Pujahari, Sumit Basu and Claude Pruneau Department of Physics, IIT Bombay, Mumbai, India
 Email-id : baidya@itb.ac.in

Introduction

- Two- and multi- particle azimuthal correlation functions have provided evidence for the existence of anisotropic flow and quark scaling (approximate) of flow coefficients in $A-A$ collisions at RHIC and LHC as well as reveals the presence of flow in smaller systems (e.g., $\mathbf{p}-\mathbf{A}$ and high multiplicity $p-p$ collisions).
- Measurements of two particle differential- number correlations, $\mathbf{R}_{\mathbf{2}}$, and transverse momentum correlations, $\mathbf{P}_{\mathbf{2}}$, have confirmed the collective nature of the azimuthal correlations observed in $\mathbf{P b}-\mathbf{P b}$ collisions ${ }^{[3]}$.
- Centrality study in A-A collisions show that near-side peak of both CI and CD correlations are narrower for \mathbf{P}_{2} than in $\mathbf{R}_{\mathbf{2}}{ }^{[2]}$.
- \mathbf{P}_{2} provides a more discriminating probe of the correlation structure of jets and their underlying events than the \mathbf{R}_{2}.

Correlation Observable

Particle Densities

$\rho_{1}\left(\overrightarrow{p_{1}}\right) \equiv \rho_{1}\left(\eta_{1}, \varphi_{1}, p_{\mathrm{T}, 1}\right) \quad \rho_{2}\left(\overrightarrow{p_{1}}, \overrightarrow{p_{2}}\right) \equiv \rho_{2}\left(\eta_{1}, \varphi_{1}, p_{\mathrm{T}, 1} ; \eta_{2}, \varphi_{2}, p_{\mathrm{T}, 2}\right)$
1 st Observable:
Two-particle differential number Correlation [3,4]:
$\mathbf{R}_{2}(\Delta \eta, \Delta \varphi)=\frac{\rho_{2}(\Delta \eta, \Delta \varphi)}{\rho_{1}\left(\eta_{1}, \varphi_{1}\right) * \rho_{1}\left(\eta_{2}, \varphi_{2}\right)}-\mathbf{1}$
$\sqrt{ }$ Sensitive to particle production mechanisms
$2^{\text {nd }}$ Observable:
Two-particle differential transverse momentum $\Delta p_{T} \Delta p_{T}>0$ Correlation [3,4]:

Where
$\Delta p_{\mathrm{T}, \mathrm{i}}=p_{\mathrm{T}, \mathrm{i}}-\left\langle p_{\mathrm{T}}\right\rangle$
\checkmark Sensitive to transverse momentum fluctuations.
Why we used R_{2} and P_{2} ?:
\checkmark Dimensionless quantity $\quad \checkmark$ Robust observable ${ }^{[1]}$
4 different charge combinations: (+-), (- +), (+ +), (- -)

- Unlike Sign(US): $\mathrm{O}^{\mathrm{US}}=\frac{1}{2}\left(\mathbf{O}^{(+,-)}+\mathbf{O}^{(-,+)}\right)$
- Like Sign(LS): $\quad O^{\text {LS }}=\frac{1}{2}\left(O^{(+,+)}+O^{(-,-)}\right)$
- Charge Independent(CI): $\mathrm{O}^{\mathrm{CI}}=\frac{1}{2}\left(\mathrm{O}^{\mathrm{US}}+\mathbf{o}^{\mathrm{LS}}\right)$
- Charge Dependent(CD): $\quad \mathbf{o}^{\mathrm{CD}}=\frac{1}{\mathbf{2}}\left(\mathbf{O}^{\mathrm{US}}-\mathbf{o}^{\mathrm{LS}}\right)$

Angular Ordering: probes the internal structure of jets

Results
PYTHIA6 Perugia-0, pp $\overline{\mathrm{s}}=2.76 \mathrm{TeV}$
(a) $0.2<p_{\mathrm{T}} \leq 2.0 \mathrm{GeV} / \mathrm{c}$

(b) $2.0<p_{\mathrm{T}} \leq 5.0 \mathrm{GeV} / \mathrm{c}$

(c) $5.0<p_{\mathrm{T}} \leq 30.0 \mathrm{GeV} / \mathrm{c}$

Q Quark-jets contribute away-side shape as it possesses charge.

Narrowing of the near-side peak with increasing $p_{\text {T }}$ for CD with PYTHIA and HERWIG
$\mathbf{P}_{2}^{\mathbf{C D}}(\Delta \eta)$ is narrower than $\mathbf{R}_{2}^{\mathbf{C D}}(\Delta \eta)$: angular ordering

Widths decrease with increasing p_{T}.
\& \mathbf{P}_{2} width is broader than $\mathbf{R}_{\mathbf{2}}$ in some p_{T} ranges which is reverse in nature as stated in Ref. [3] .

Summary

$\sqrt{ } p_{\mathrm{T}}$-dependance study of $\mathbf{C I}$ and $\mathbf{C D}$ with \mathbf{R}_{2} and \mathbf{P}_{2} in $\mathbf{p}-\mathbf{p}$ collisions at $\sqrt{\mathbf{s}}=2.76 \mathrm{TeV}$ with the PYTHIA and HERWIG Monte Carlo models are performed for both identified and non-identified species.
\checkmark Narrower shape of the P_{2} near-side peak, as compared to R_{2} is because of p_{T} dependent angular ordering of hadrons produced in jets.

References

[^0]
[^0]: 1. B. Sahoo et al. , Phys. Rev. C 100, 024909
 2. J. Adam et al. (ALICE Collaboration), Phys. Rev. Lett. 118, 162302 (2017).
 3. J. Adam et al. (ALICE Collaboration), Phys. Rev. C 100, 044903 (2019)
 4. M. Sharma and C. A. Pruneau, PRC 79, 024905 (2009).
 5.S. Bass, P. Danielewicz and S. Pratt, PRL 85, 2689 (2000).
