Introduction

- We investigate anisotropic flow for a 2D system of massless particles, within the approach of C. Gombeaud and J.-Y. Ollitrault [1].
- For controlled initial geometries, we study the change in v_2, v_3, v_4 as the Knudsen number Kn is varied.
- Using a MC Glauber model as input for the initial condition, we show how the resulting fluctuations in v_2 and v_3 depend on the mean number of rescatterings in the system.

Dependence of anisotropic flow on Kn for controlled initial conditions

- The spatial part of our initial-state distribution function:

 $f(r, \theta) = \frac{1}{2\pi}e^{-\frac{r^2}{2\sigma^2}} \left[1 - 4xe^{-\frac{r^2}{2\sigma^2}} \left(\frac{r}{\sigma} \right)^2 \cos(2\theta) - \sqrt{\pi}xe^{-\frac{r^2}{2\sigma^2}} \left(\frac{r}{\sigma} \right)^2 \cos(3\theta) - \frac{1}{2}xe^{-\frac{r^2}{2\sigma^2}} \left(\frac{r}{\sigma} \right)^4 \cos(4\theta) \right]$.

- We performed calculations at different Kn with only one $\varepsilon_n = 0.15$ and the other $\varepsilon_{pp,n} = 0$. To reduce statistical fluctuations of v_n, about 0 in the initial state, we averaged over 500 runs with $2.5 \cdot 10^5$ particles for each (initial) geometry.
- Every anisotropic flow harmonic behaves as $v_n = \frac{\rho_0 v_n}{n^\beta}$, as anticipated in [2] and observed in [1] for v_2.
- At fixed Kn, higher harmonics are more suppressed.
- As n grows, v_n sets on at increasingly larger number of rescatterings (smaller Kn).

Setup for MC initial condition

- Input: TGLauberMC [3] (Pb-Pb, $\sqrt{s_{NN}} = 5.02$ TeV) $\rightarrow N_{\text{coll}}(x, y), N_{\text{part}}(x, y)$
- Energy density: $e(x, y)$

 $- N(x, y) = (1 - \xi)N_{\text{part}} + \xi N_{\text{coll}}$ with $\xi \approx 0.15$.

 - Smear the energy density as a Gaussian with width $R_N = \frac{1}{2} \sqrt{\frac{2\xi}{\pi}}$.
- For the partonization we convert $e(x, y)$ to $n(x, y)$ with the equations for an ideal gas in 2D. We checked the energy conservation in the process.
- Momentum isotropy, i.e. $v_0 = 0$.
- We compute 10 runs over one initial condition with $5 \cdot 10^5$ particles each to reduce statistical errors.

Fluctuation characterization

- Fluctuations in the eccentricity probability distribution can be characterized by the elliptic-power law [4]:

 $p(\varepsilon_n) = \frac{2\varepsilon_n}{\pi} \left(1 - \varepsilon_n^2 \right)^{n-1} \left(1 - \varepsilon_n^2 \right)^{n+1} \int_0^\pi d\phi (1 - \varepsilon_n \cos \phi)^{-2n-1}$.

 - For vanishing mean anisotropy ε_0 in the reaction plane:

 $p(\varepsilon_0) = 2\varepsilon_0 \left(1 - \varepsilon_0^2 \right)^{-1}$.

 - The relation between ε_n and v_n (for $n = 2, 3$) is: $v_n \approx \varepsilon_n \varepsilon_0$.

Fig. 2: Distribution of e_2 and v_2 (left) and the distribution of e_3 and v_3 (right) for $Kn = 0.29$.

- The anisotropic flow distribution reads:

 $p(v_n) = \frac{1}{v_n} \rho_0 p \left(\frac{v_n}{v_n} \right)$.

Propagation of fluctuations

- The integral form of the power law is better suited for the distributions with non vanishing mean anisotropy.

Fig. 3: Fitted distributions of v_2 (top row) and v_3 (bottom row) for $(Kn) = 0.29$ (left column) and $(Kn) = 0.07$ (right column).

- We find that for e_2 and e_3 the fluctuations in the distributions are washed out during the time evolution, resulting in larger values of α for the v_n distributions.

- The value of α decreases and that of v_n increases with growing number of rescatterings. The computation with the largest Kn, approaching the free-streaming limit, yields a peaked $p(v_n)$, for which the value of α is limited by numerical fluctuations in the initial momentum distribution.

<table>
<thead>
<tr>
<th>Kn</th>
<th>v_2 (top row)</th>
<th>v_3 (bottom row)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.29</td>
<td>$2\times e_2 > 0.91$</td>
<td>$3\times e_2 > 0.91$</td>
</tr>
<tr>
<td>0.07</td>
<td>$2\times e_2 > 0.95$</td>
<td>$3\times e_2 > 0.95$</td>
</tr>
</tbody>
</table>

Tab. 1: Fit values for the e_2 and v_2 distributions for collisions at $b = 6$ fm. Cells with a * indicate fits with the distribution function where $v_0 = 0$.

Outlook

Further transport calculations with smaller Kn are needed to see if the value of α decreases further and finally approaches the α value of the initial state eccentricity distribution.

The calculation will also be performed for different impact parameters.

References