Fluctuations of anisotropic flow in transport **Quark Matter 2019** ## Hendrik Roch* and Nicolas Borghini Faculty of Physics, Bielefeld University, Germany * hroch@physik.uni-bielefeld.de #### Introduction - We investigate anisotropic flow for a 2D system of massless particles, within the approach of C. Gombeaud and J.-Y. Ollitrault [1]. - ullet For controlled initial geometries, we study the change in v_2, v_3, v_4 as the Knudsen number Kn is varied. - ullet Using a MC Glauber model as input for the initial condition, we show how the resulting fluctuations in v_2 and v_3 depend on the mean number of rescatterings in the system. ## Dependence of anisotropic flow on Kn for controlled initial conditions The spatial part of our initial-state distribution function: $$f(r,\theta) = \frac{1}{2\pi R^2} e^{-\frac{r^2}{2R^2}} \left[1 - 4\varepsilon_2 e^{-\frac{r^2}{2R^2}} \left(\frac{r}{R} \right)^2 \cos(2\theta) - \sqrt{2\pi}\varepsilon_3 e^{-\frac{r^2}{2R^2}} \left(\frac{r}{R} \right)^3 \cos(3\theta) - \frac{4}{3}\varepsilon_4 e^{-\frac{r^2}{2R^2}} \left(\frac{r}{R} \right)^4 \cos(4\theta) \right]$$ - ullet We performed calculations at different Kn with only one $arepsilon_n=0.15$ and the other $arepsilon_{p eq n}=0$. To reduce statistical fluctuations of v_n about 0 in the initial state, we averaged over 500 runs with $2.5 \cdot 10^5$ particles for each (initial) geometry. - ullet Every anisotropic flow harmonic behaves as $v_n= rac{v_n^{ m hydro}}{1+ rac{{ m Kn}}{{ m Kn}_0}}$, as anticipated in [2] and observed in [1] for v_2 . - At fixed Kn, higher harmonics are more suppressed. - ullet As n grows, v_n sets on at increasingly larger number of rescatterings (smaller Kn). ## Setup for MC initial condition - Input: TGlauberMC [3] (Pb-Pb $\sqrt{s_{\mathrm{NN}}} = 5.02 \, \mathrm{TeV}) \to N_{\mathrm{coll}}(x,y), N_{\mathrm{part}}(x,y)$ - Energy density: e(x,y) - $N(x,y) = (1 \xi)N_{\text{part}} + \xi N_{\text{coll}}$ with $\xi \approx 0.15$. - Smear the energy density as a Gaussian with width $R_{ m N}=\frac{1}{2}\sqrt{\frac{\sigma_{ m inel}^{ m NN}}{\pi}}$. - ullet For the particlization we convert e(x,y) to n(x,y) with the equations for an ideal gas in 2D. We checked the energy conservation in the process. - Momentum isotropy, i.e. $v_n = 0$. - ullet We compute 10 runs over one initial condition with $5\cdot 10^5$ particles each to reduce statistical errors. ### Fluctuation characterization Fluctuations in the eccentricity probability distribution can be characterized by the elliptic-power law [4]: $$p(\varepsilon_n) = \frac{2\alpha\varepsilon_n}{\pi} \left(1 - \varepsilon_n^2\right)^{\alpha - 1} \left(1 - \varepsilon_0^2\right)^{\alpha + \frac{1}{2}} \int_0^{\pi} d\varphi \left(1 - \varepsilon_0\varepsilon_n \cos\varphi\right)^{-2\alpha - 1}.$$ - For vanishing mean anisotropy ε_0 in the reaction plane: $p(\varepsilon_n) = 2\alpha\varepsilon_n \left(1 - \varepsilon_n^2\right)^{\alpha - 1}.$ - The relation between ε_n and v_n (for n=2,3) is: $v_n \approx \mathcal{K}_{n,n} \varepsilon_n$. **Fig. 2:** Distribution of ε_2 and v_2 (left) and the distribution of ε_3 and v_3 (right) for $\langle \text{Kn} \rangle = 0.29.$ - The anisotropic flow distribution reads: $p(v_n) = \frac{1}{\mathcal{K}_{n,n}} p\left(\frac{v_n}{\mathcal{K}_{n,n}}\right)$. # Propagation of fluctuations The integral form of the power law is better suited for the distributions with non vanishing mean anisotropy. **Fig. 3:** Fitted distributions of v_2 (top row) and v_3 (bottom row) for $\langle Kn \rangle = 0.29$ (left column) and $\langle \text{Kn} \rangle = 0.07$ (right column). - We find that for ε_2 and ε_3 the fluctuations in the distributions are washed out during the time evolution, resulting in larger values of α for the v_n distributions. - The value of α decreases and that of v_0 increases with growing number of rescatterings. The computation with the largest Kn, approaching the free-streaming limit, yields a peaked $p(v_n)$, for which the value of α is limited by numerical fluctuations in the initial momentum distribution. | b=6 fm | $arepsilon_0$ or v_0 | α | b=6 fm | $arepsilon_0$ or v_0 | α | |---|------------------------|---------------|---|------------------------|------------------| | $arepsilon_2$ | 0.160 ± 0.002 | 62 ± 2 | $arepsilon_3$ | 0.066 ± 0.005 | 71 ± 4 | | $v_{2,\langle \mathrm{Kn}\rangle=2.91}$ | - | 6400 ± 30 | $v_{3,\langle \mathrm{Kn}\rangle=2.91}$ | - | 802100 ± 700 | | $v_{2,\langle \mathrm{Kn}\rangle=0.29}$ | 0.0327 ± 0.0002 | 1560 ± 20 | $v_{3,\langle \mathrm{Kn}\rangle=0.29}$ | 0.0088 ± 0.0002 | 5707 ± 100 | | $v_{2,\langle \mathrm{Kn}\rangle=0.07}$ | 0.0408 ± 0.0002 | 980 ± 20 | $v_{3,\langle \mathrm{Kn}\rangle=0.07}$ | 0.0153 ± 0.0003 | 1840 ± 40 | **Tab. 1:** Fit values for the $\varepsilon_{2,3}$ and $v_{2,3}$ distributions for collisions at b=6 fm. Cells with a "-" indicate fits with the distribution function where $v_0 = 0$. **Outlook** Further transport calculations with smaller Kn are needed to see if the value of α decreases further and finally approaches the α value of the initial state eccentricity distribution. The calculation will also be performed for different impact parameters. #### References Clément Gombeaud and Jean-Yves Ollitrault. Covariant transport theory approach to elliptic flow in relativistic heavy ion collision. Phys. Rev. C, 77:054904, May 2008. Rajeev S. Bhalerao, Jean-Paul Blaizot, Nicolas Borghini, and Jean-Yves Ollitrault. Elliptic flow and incomplete equilibration at RHIC. Physics Letters B, 627(1):49 – 54, 2005. C. Loizides, J. Nagle, and P. Steinberg. Improved version of the PHOBOS Glauber Monte Carlo. SoftwareX, 1-2:13 – 18, 2015. Li Yan, Jean-Yves Ollitrault, and Arthur M. Poskanzer. Azimuthal anisotropy distributions in high-energy collisions. Physics Letters B, 742:290 – 295, 2015. # Acknowledgements We acknowledge support by the Deutsche Forschungsgemeinschaft (DFG) through the grant CRC-TR 211 "Strong-interaction matter under extreme conditions". Computational resources have been provided by the Center for Scientific Computing (CSC) at the Goethe-University of Frankfurt.