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Introduction
• We investigate anisotropic flow for a 2D system of massless particles, within the approach of C. Gombeaud and J.-Y. Ollitrault [1].

• For controlled initial geometries, we study the change in v2, v3, v4 as the Knudsen number Kn is varied.

• Using a MC Glauber model as input for the initial condition, we show how the resulting fluctuations in v2 and v3 depend on the mean number of
rescatterings in the system.

Dependence of anisotropic flow on Kn for controlled initial conditions
• The spatial part of our initial-state distribution function:
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• We performed calculations at different Kn with only one εn = 0.15 and the other εp 6=n = 0. To

reduce statistical fluctuations of vn about 0 in the initial state, we averaged over 500 runs with
2.5 · 105 particles for each (initial) geometry.

• Every anisotropic flow harmonic behaves as vn =
vhydron

1+ Kn
Kn0

, as anticipated in [2] and observed in

[1] for v2.

• At fixed Kn, higher harmonics are more suppressed.

• As n grows, vn sets on at increasingly larger number of rescatterings (smaller Kn).

10−2 10−1 100 101 102 103 104 105

Kn0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

|vn|

Kn0,v2 = 0.834 ± 0.051

vhydro
2 = 0.0368 ± 0.0007

Kn0,v4 = 0.122 ± 0.020

vhydro
4 = 0.0090 ± 0.0010

|v2| = vhydro
2

1+ Kn
Kn0

|v4| = vhydro
4

1+ Kn
Kn0

1σ fit error

10−2 10−1 100 101 102 103 104 105

Kn0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035 |v3|

Kn0 = 0.230 ± 0.038

vhydro
3 = 0.034 ± 0.002

|v3| = vhydro
3

1+ Kn
Kn0

1σ fit error

10−2 10−1 100 101 102 103 104 105

Kn0.000

0.005

0.010

0.015

0.020

0.025

0.030 |v4|

Kn0 = 0.052 ± 0.013

vhydro
4 = 0.0273 ± 0.0038

|v4| = vhydro
4

1+ Kn
Kn0

1σ fit error

Fig. 1: |vn| vs. Kn plotted
for initial conditions with
only ε2 = 0.15 (top left),
only ε3 = 0.15 (top right)
and only ε4 = 0.15 (bot-
tom left).

Setup for MC initial condition
• Input: TGlauberMC [3] (Pb-Pb√sNN = 5.02 TeV)→ Ncoll(x, y), Npart(x, y)

• Energy density: e(x, y)

– N(x, y) = (1− ξ)Npart + ξNcoll with ξ ≈ 0.15.

– Smear the energy density as a Gaussian with width RN = 1
2

√
σNN
inel
π

.

• For the particlization we convert e(x, y) to n(x, y) with the equations for
an ideal gas in 2D. We checked the energy conservation in the process.

• Momentum isotropy, i.e. vn = 0.

• We compute 10 runs over one initial condition with 5 ·105 particles each
to reduce statistical errors.

Fluctuation characterization
• Fluctuations in the eccentricity probability distribution can be character-

ized by the elliptic-power law [4]:
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– For vanishing mean anisotropy ε0 in the reaction plane:
p(εn) = 2αεn

(
1− ε2n

)α−1.

– The relation between εn and vn (for n = 2, 3) is: vn ≈ Kn,nεn.
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Fig. 2: Distribution of ε2 and v2 (left) and the distribution of ε3 and v3 (right) for
〈Kn〉 = 0.29.

– The anisotropic flow distribution reads: p(vn) = 1
Kn,n p

(
vn
Kn,n

)
.

Propagation of fluctuations
• The integral form of the power law is better suited for the distributions

with non vanishing mean anisotropy.
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Fig. 3: Fitted distributions of v2 (top row) and v3 (bottom row) for 〈Kn〉 = 0.29 (left column)
and 〈Kn〉 = 0.07 (right column).

• We find that for ε2 and ε3 the fluctuations in the distributions are washed
out during the time evolution, resulting in larger values of α for the vn
distributions.

• The value of α decreases and that of v0 increases with growing number
of rescatterings. The computation with the largest Kn, approaching the
free-streaming limit, yields a peaked p(vn), for which the value of α is
limited by numerical fluctuations in the initial momentum distribution.
b = 6 fm ε0 or v0 α

ε2 0.160 ± 0.002 62 ± 2
v2,〈Kn〉=2.91 - 6400 ± 30

v2,〈Kn〉=0.29 0.0327 ± 0.0002 1560 ± 20

v2,〈Kn〉=0.07 0.0408 ± 0.0002 980 ± 20

b = 6 fm ε0 or v0 α

ε3 0.066 ± 0.005 71 ± 4
v3,〈Kn〉=2.91 - 802100 ± 700

v3,〈Kn〉=0.29 0.0088 ± 0.0002 5707 ± 100

v3,〈Kn〉=0.07 0.0153 ± 0.0003 1840 ± 40

Tab. 1: Fit values for the ε2,3 and v2,3 distributions for collisions at b = 6 fm. Cells with a
"-" indicate fits with the distribution function where v0 = 0.

Outlook Further transport calculations with smaller Kn are needed to
see if the value of α decreases further and finally approaches the α value
of the initial state eccentricity distribution.
The calculation will also be performed for different impact parameters.
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