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1 Introduction
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Figure 1: Plot of energy density of color fields
in a 3+1D collision from [1].

Collision of two nuclei in the Color
Glass Condensate (CGC) framework
Creation of the Glasma:

– Intermediate state between
CGC and quark-gluon plasma
(transition τ . 1 fm/c)

– Pre-equilibrium stage (before
hydrodynamic stage)

2 Simulations in 3+1D

Figure 2: Colored Particle-In-Cell (CPIC)
simulation in the laboratory frame [2].

Collisions at finite collision energy√
sNN with finite thickness of nuclei

along beam axis ∝ R/γ

Colored particle-in-cell (CPIC)
simulation contains hard particles
and soft fields

Explicitly broken boost invariance
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Figure 3: Rapidity profile of local rest frame
energy density for

√
sNN = 200GeV at τ =

1 fm/c from [1]. Solid black lines: simulation
data; (a), (b), (c): different values of infrared
regulator. Dashed lines: Gaussian fits. Blue
dots and curve: measured pion multiplicities at
RHIC. Red solid line: Landau model.

Rapidity dependence due to classical
time evolution: leading order result

3 Variational integrators

Figure 4: The strategy behind variational integrators: first discretize the action S, then demand δS = 0.

4 Semi-implicit solver for real-time lattice gauge theory
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Figure 5: Wilson lines used in the
semi-implicit scheme [3].

Standard Wilson action:

Discretized action for semi-implicit scheme:

5 Curing the numerical Cherenkov instability

Numerical Cherenkov instability
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Figure 6: Lattice dispersion for leapfrog (LF), implicit
(IM) and semi-implicit (SI) schemes, along propagation
direction x1 and transverse to it x2 [4].

High momentum modes propagate
slower than the speed of light due to
numerical dispersion
Mismatch between particles and
fields leads to unphysical Cherenkov
radiation of color charges
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Figure 7: Comparison of numerical dispersion in
various schemes [3]: wave pulses disperse over
time due to non-linear dispersion relation. New
semi-implicit scheme is free of dispersion along
propagation direction and preserves pulse shape.
Analogous phenomenon present in lattice gauge
theory, where this drives a numerical instability.
The semi-implicit scheme eliminates this problem
entirely.

6 Summary & References

3+1D setup for studying collisions at finite collision energy within CGC framework
Explicit breaking of boost invariance from classical time evolution (leading order)
New semi-implicit scheme to study complicated initial conditions at higher energies
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