

Curing the numerical Cherenkov instability in 3+1D Glasma simulations

Andreas Ipp, David Müller

1 Introduction

Figure 1: Plot of energy density of color fields in a 3+1D collision from [1].

- Collision of two nuclei in the Color Glass Condensate (CGC) framework
- Creation of the Glasma:
 - Intermediate state between CGC and quark-gluon plasma (transition $\tau \lesssim 1\,\mathrm{fm}/c$)
 - Pre-equilibrium stage (before hydrodynamic stage)

2 Simulations in 3+1D

Figure 2: Colored Particle-In-Cell (CPIC) simulation in the laboratory frame [2].

- Collisions at finite collision energy $\sqrt{s_{
 m NN}}$ with finite thickness of nuclei along beam axis $\propto R/\gamma$
- Colored particle-in-cell (CPIC) simulation contains hard particles and soft fields

Explicitly broken boost invariance

Figure 3: Rapidity profile of local rest frame energy density for $\sqrt{s_{\mathrm{NN}}} = 200\,\mathrm{GeV}$ at $\tau = 1\,\mathrm{fm/}c$ from [1]. Solid black lines: simulation data; (a), (b), (c): different values of infrared regulator. Dashed lines: Gaussian fits. Blue dots and curve: measured pion multiplicities at RHIC. Red solid line: Landau model.

 Rapidity dependence due to classical time evolution: leading order result

3 Variational integrators

Figure 4: The strategy behind variational integrators: first discretize the action S, then demand $\delta S = 0$.

4 Semi-implicit solver for real-time lattice gauge theory

Figure 5: Wilson lines used in the semi-implicit scheme [3].

- Standard Wilson action: $S[U] = \frac{V}{g^2} \sum_{x} \left(\sum_{i} \frac{1}{(a^0 a^i)^2} \operatorname{tr} \left(2 U_{x,0i} U_{x,0i}^{\dagger} \right) \frac{1}{2} \sum_{i \neq i} \frac{1}{(a^i a^j)^2} \operatorname{tr} \left(2 U_{x,ij} U_{x,ij}^{\dagger} \right) \right)$
- Discretized action for semi-implicit scheme:

$$S[U] = \frac{V}{g^2} \sum_{x} \left(\frac{1}{(a^0 a^1)^2} \operatorname{tr} \left(C_{x,01} C_{x,01}^{\dagger} \right) + \sum_{i} \frac{1}{(a^0 a^i)^2} \operatorname{tr} \left(C_{x,0i} C_{x,0i}^{\dagger} \right) \right)$$

$$- \frac{1}{4} \sum_{i,|j|} \frac{1}{(a^i a^j)^2} \operatorname{tr} \left(C_{x,ij} M_{x,ij}^{\dagger} \right) - \frac{1}{4} \sum_{|j|} \frac{1}{(a^1 a^j)^2} \operatorname{tr} \left(C_{x,1j} W_{x,1j}^{\dagger} + \text{h.c.} \right)$$
implicit part
semi-implicit part

5 Curing the numerical Cherenkov instability

Numerical Cherenkov instability

Figure 6: Lattice dispersion for leapfrog (LF), implicit (IM) and semi-implicit (SI) schemes, along propagation direction x^1 and transverse to it x^2 [4].

- High momentum modes propagate slower than the speed of light due to numerical dispersion
- Mismatch between particles and fields leads to unphysical Cherenkov radiation of color charges

Figure 7: Comparison of numerical dispersion in various schemes [3]: wave pulses disperse over time due to non-linear dispersion relation. New semi-implicit scheme is free of dispersion along propagation direction and preserves pulse shape. Analogous phenomenon present in lattice gauge theory, where this drives a numerical instability. The semi-implicit scheme eliminates this problem entirely.

6 Summary & References

- 3+1D setup for studying collisions at finite collision energy within CGC framework
- Explicit breaking of boost invariance from classical time evolution (leading order)
- New semi-implicit scheme to study complicated initial conditions at higher energies
- [1] A. Ipp and D. Müller, PLB **771**, 74 (2017) [arXiv:1703.00017]
- [2] D. Gelfand, A. Ipp and D. Müller, PRD **94**, no. 1, 014020 (2016) [arXiv:1605.07184]
- [3] A. Ipp and D. Müller, EPJC **78**, no. 11, 884 (2018) [arXiv:1804.01995]
- [4] D. Müller, PhD thesis (2019) [arXiv:1904.04267]