Influences of electromagnetic field characteristics on the CME and CMW measurements

Xin-Li Zhao, Guo-Liang Ma, and Yu-Gang Ma

Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Institute of Modern Physics, Fudan University
Shanghai Institute of Applied Physics, Chinese Academy of Sciences

CME leads a vector current

\[J = \frac{Qe}{2\pi} \mu_B B \]

CME signal – charge separation signal \(\Delta \gamma \propto (B^2 \cos^2 (\Psi_B - \Psi_{SP})) \)

CMW (CME+CSE) signal: v2 splitting of positive and negative charged particles (slope parameter \(\gamma \)) [1, 2].

CME results: isobaric collisions

Woods-Saxon form of spatial distribution of nucleons:

\[\rho(r, \theta) = \rho_0 / (1 + \exp((r - R_0 - \beta_2 R_0 \gamma_2 (\theta))/\alpha)) \]

<table>
<thead>
<tr>
<th>Case</th>
<th>(R_0)</th>
<th>(a)</th>
<th>(\beta_2)</th>
<th>(\beta_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td>5.13</td>
<td>0.46</td>
<td>0.13</td>
<td>0.00</td>
</tr>
<tr>
<td>Case 2</td>
<td>5.06</td>
<td>0.46</td>
<td>0.06</td>
<td>0.00</td>
</tr>
<tr>
<td>Ru96</td>
<td>5.13</td>
<td>0.46</td>
<td>0.13</td>
<td>0.00</td>
</tr>
<tr>
<td>Zr96</td>
<td>5.06</td>
<td>0.46</td>
<td>0.18</td>
<td>0.00</td>
</tr>
</tbody>
</table>

\(\Psi_z \) is participant plane which is constructed by initial geometry of partons.

\(\Psi_z^{SP} \) is spectator plane which is constructed by spectator neutrons from one projectile [3].

In central and mid-central collisions, \(B^2 \cos^2 (\Psi_B - \Psi_z) \) are similar in the four cases but different in peripheral collisions.

\[B^2 \cos^2 (\Psi_B - \Psi_z^{SP}) > B^2 \cos^2 (\Psi_B - \Psi_z) \]

For case 1, RR of \(B^2 \cos^2 (\Psi_B - \Psi_z) \) and \(B^2 \cos^2 (\Psi_B - \Psi_z^{SP}) \) are similar.

For case 2, RR of \(\Psi_z \) is larger than RR of \(\Psi_z^{SP} \).

\(\Psi_z^{SP} \) is expected to reflect much cleaner information about the CME signal.

CMW results: \(E \cdot B \)

A dipolar distribution of \(E \cdot B \) is observed in noncentral \(\text{Au}+\text{Au} \) collisions.

\[\mathcal{J}_5 = \frac{Qe}{2\pi} \mu_B B \]

A dipolar \(E \cdot B \) in a magnetic field can lead to an electric quadrupole with the help of CME.

The density of \(E \cdot B \) is consistent with the centrality dependence of the slope parameter \(\gamma \) by STAR.

CME in isobaric collisions

a) Deformation difference causes some effects.

b) \(\Psi_z^{SP} \) has stronger correlation with \(\Psi_B \) than \(\Psi_z \).

c) \(\Delta \gamma \) w.r.t \(\Psi_z^{SP} \) reflects much cleaner information about the CME signal.

CMW in \(\text{Au}+\text{Au} \)

a) A dipolar \(E \cdot B \) is observed in noncentral \(\text{Au}+\text{Au} \) collisions.

b) It can result in an electric quadrupole without CMW \(\Rightarrow \) a new interpretation to the slope \(\gamma \) measured by STAR.

c) Source for other chiral anomalous effects?

References

