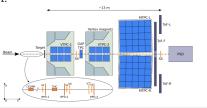
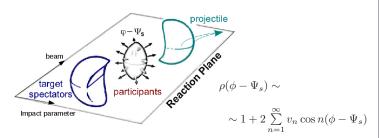


Anisotropic flow measurements from the NA61/SHINE and NA49 beam momentum scan programs at CERN SPS

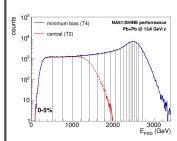


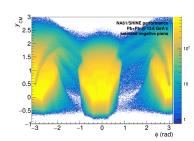
Evgeny Kashirin (MEPhI), Ilya Selyuzhenkov (GSI/MEPhI), Viktor Klochkov (Frankfurt University/GSI), Oleg Golosov (MEPhI) for the NA61/SHINE Collaboration


Abstract

We present a continuation of the directed and elliptic flow studies [1, 2] from the NA61/SHINE and NA49 beam momentum scan programs. The results extend the existing world data available from the previous NA49 measurements and ongoing BES-II and fixed-target programs at STAR. The developed analysis techniques are also relevant for measurements at the future CBM experiment at FAIR and the MPD and BM@N experiment at NIC Δ

Anisotropic Transverse Flow




Anisotropic transverse flow is quantified by Fourier coefficients in the decomposition of the particle azimuthal distribution relative to the collision symmetry plane (Ψ_s) . Ψ_s can be determined by the projectile (target) spectator deflection Ψ_{proj} (Ψ_{targ}) or the shape of the participant zone Ψ_{pp} .

Data

NA61/SHINE subsystems [3] used for the analysis:

- VTPC-1, VTPC-2, MTPC for tracking and particles identification;
- Projectile Spectator Detector (PSD) for spectator plane estimation and centrality;

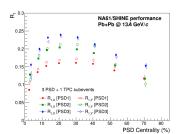
Corrections for detector azimuthal anisotropy in flow analysis are applied p_T -y differentially using an extension of the Qn-Corrections Framework [4, 5].

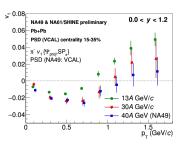
Flow Observable

$$v_n^A(p_T, y) = \frac{2\langle u_{i,n}(p_T, y)Q_{i,n}^A \rangle}{R_{i,n}^A},$$

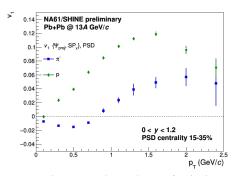
where flow vectors u_n and Q_n :

$$u_n = u_{x,n} + iu_{y,n} = \cos n\phi + i\sin n\phi$$

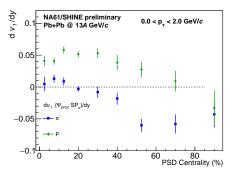

$$Q_n = Q_{x,n} + iQ_{y,n} = \sum_k w_k u_{n,k}$$

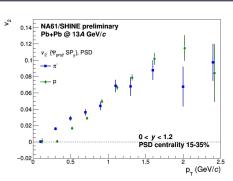

k-th PSD module energy is taken as weight w_k . Event plane resolution R_n is calculated using 3+1-subevents method. For A = PSD1, PSD3:

$$R_{i,n}^{A} = \sqrt{2 \frac{\langle Q_{i,n}^{A} Q_{i,n}^{T} \rangle \langle Q_{i,n}^{A} Q_{i,n}^{C} \rangle}{\langle Q_{i,n}^{T} Q_{i,n}^{C} \rangle}}$$


where $Q_{i,n}^T$ is formed from

$$\begin{aligned} & \text{protons } 0.8 < y < 1.2 \text{ and} \\ & R_{i,n}^T = \sqrt{2 \frac{\langle Q_{i,n}^A Q_{i,n}^T \rangle \langle Q_{i,n}^T Q_{i,n}^C \rangle}{\langle Q_{i,n}^A Q_{i,n}^C \rangle}}; \\ & i = x, y. \end{aligned}$$




Results

Changing sign at different collision centrality

Clear mass dependence $v_2(p_T)$

Summary

Directed and elliptic flow were measured relative to the spectator plane in Pb+Pb at 13, 30, and 40A GeV. Clear mass dependence is observed for v_1 and its slope dv_1/dy , and v_2 . The directed flow shows strong energy dependence, with the slope of protons and negatively charged pions changing sign at different collision centralities.

References

- [1] E. Kashirin, O. Golosov, V. Klochkov, and I. Selyuzhenkov. Acta Physica Polonica B, 12:419, 01 2019.
- [2] Viktor Klochkov and Ilya Selyuzhenkov. Nucl. Phys., A982:439–442, 2019.
- [3] N. Abgrall et al. JINST, 9:P06005, 2014.
- [4] Ilya Selyuzhenkov and Sergei Voloshin. Phys. Rev., C77:034904, 2008.
- 5] Victor Gonzalez, Jaap Onderwaater, and Ilya Selyuzhenkov. https://github.com/flowcorrections/flowvectorcorrections.