

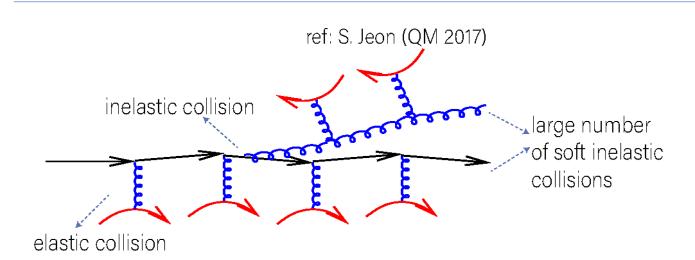
Data-driven constraints on the drag and diffusion of light partons

Tianyu Dai*, Derek Teaney[†], Jean-François Paquet*, Steffen A. Bass*

* Duke University

† Stony Brook University

I. Parton energy loss: hard-soft factorization



Interactions with the medium:

- Large number of soft interactions
- Rare hard interactions

Parton energy loss reformulated as hard interactions + diffusion process¹.

$$(\partial_t + \vec{v} \cdot \nabla_{\vec{x}}) f(\vec{p}, \vec{x}, t) = -\mathbb{C}^{1 \leftrightarrow 2} [f] - \mathbb{C}^{2 \leftrightarrow 2} [f]$$

$$(o_t \mid v \mid v_x), (p, x, v) = (o_t \mid v \mid v), (p, x, v) = (o_t \mid v \mid v), (p, x, v) = (o_t \mid v \mid v), (p, x, v) = (o_t \mid v \mid v), (p,$$

$$(\partial_t + \vec{v} \cdot \nabla_{\vec{x}}) f(\vec{p}, \vec{x}, t) = -\mathbb{C}^{\text{large}-\omega}(\mu_{\omega}) - \mathbb{C}^{\text{large-angle}}(\mu_{\tilde{q}_{\perp}}, \Lambda) - \mathbb{C}^{\text{split}}(\Lambda) - \mathbb{C}^{\text{diff}}(\mu_{\tilde{q}_{\perp}}, \mu_{\omega})$$

 ω is the energy of the radiated parton, $\tilde{q}_{\perp} \equiv \sqrt{q^2 - \omega^2}$, q is its momentum transfer. μ_{ω} , $\mu_{\hat{q}_{\perp}}$, Λ are cutoffs between soft and hard interactions.

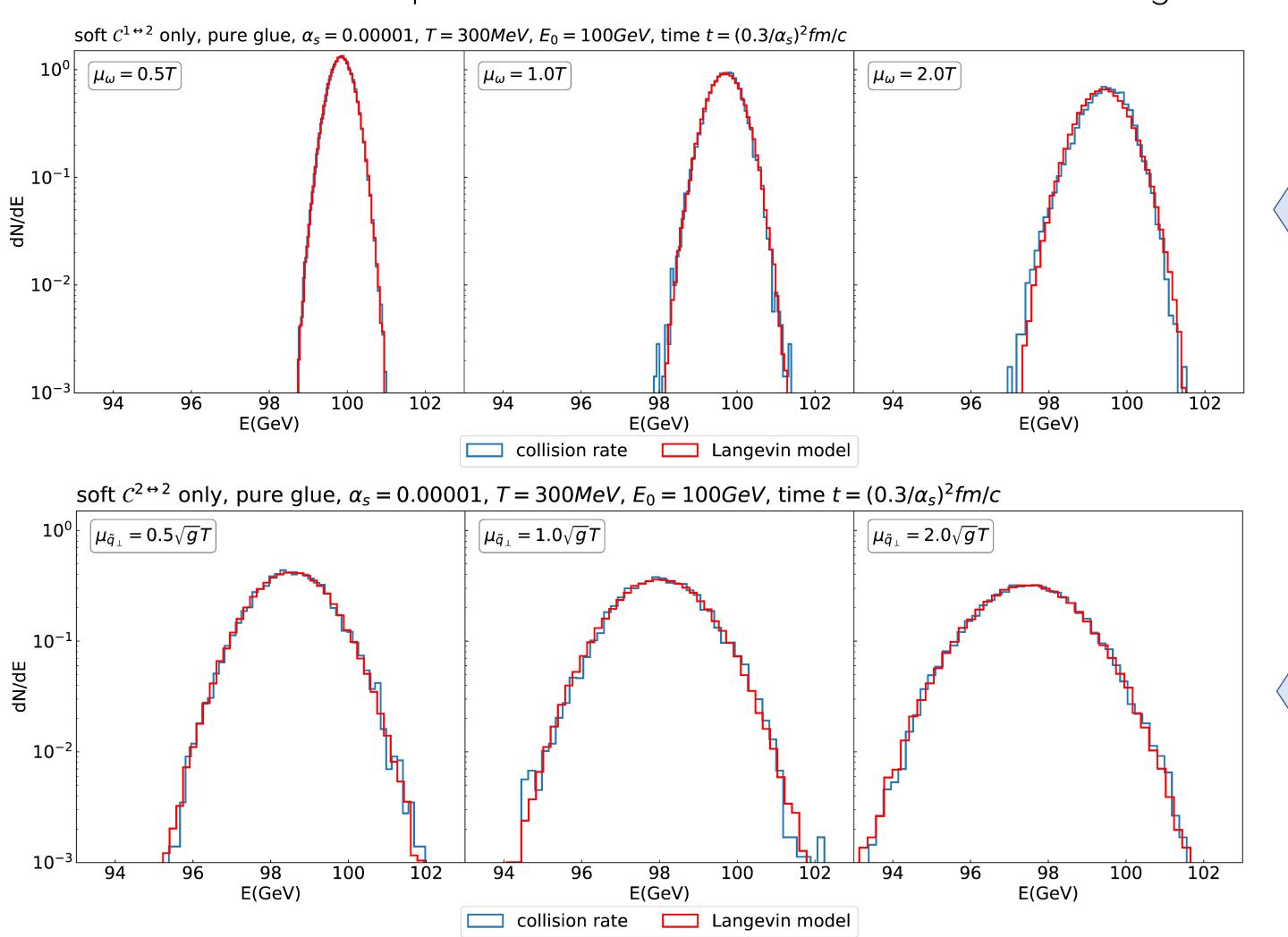
 $gT \ll \mu_{\hat{q}_{\perp}}$, $\mu_{\omega} \ll T$, $3T \ll \Lambda \ll E_0$, where E_0 is the initial parton energy.

Benefits of the hard-soft reformulated model:

- o systematic factorization of soft and hard interactions
- o efficient and flexible description of soft interactions
- possibility of extending to next-to-leading order

III. Comparison between diffusion and collision rate

Soft interactions are usually treated with a collision rate, while in the hard-soft reformulated model, frequent soft interactions are treated with a Langevin model.

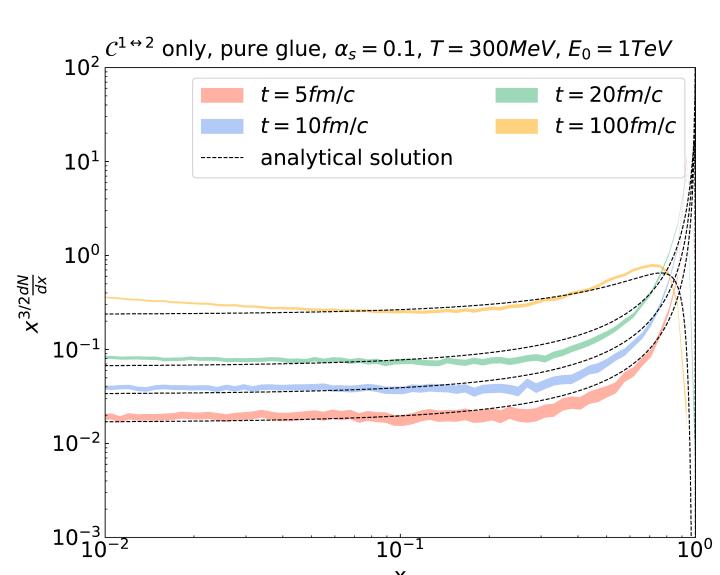


Both the elastic and inelastic soft parton-medium interactions can be described by a diffusion process at small coupling.

VI. Comparison with analytical approximation

An analytical solution³ is known for the in-medium gluon cascade assuming:

- o successive branchings are independent
- o approximate inelastic differential rate valid in deep LPM region



Analytical distribution of gluons:

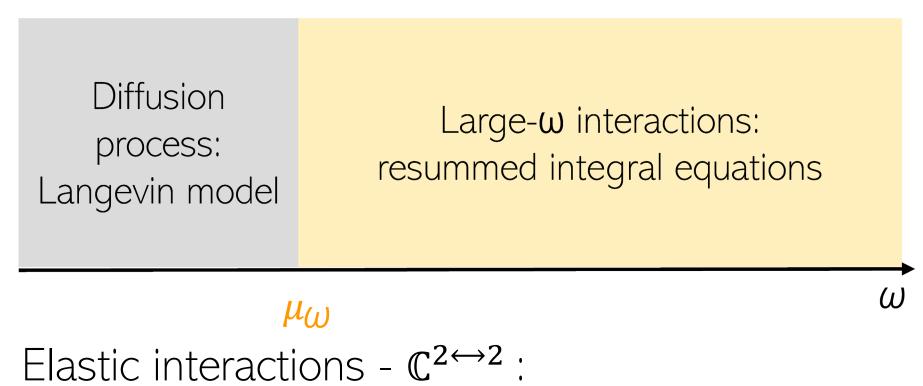
$$x^{3/2} \frac{dN}{dx} = \frac{\tau}{(1-x)^{3/2}} e^{-\pi \left[\tau^2/(1-x)\right]}$$

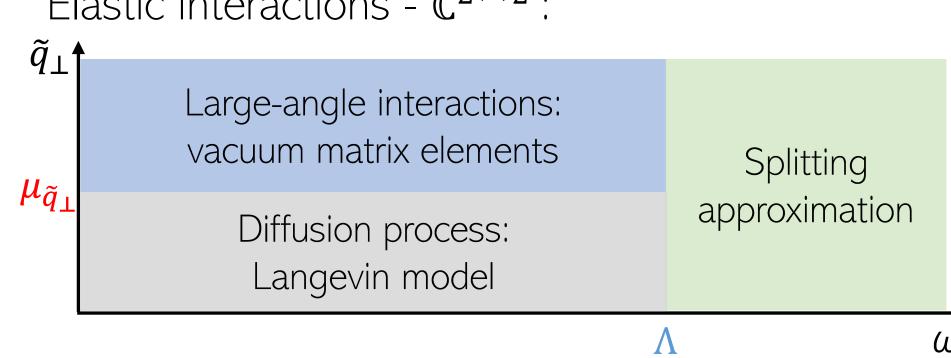
where $x \equiv \omega/E_0$ is the energy fraction, N is the number of gluons,

and
$$au \equiv rac{lpha_S N_C}{\pi} \sqrt{rac{\hat{q}}{E}} \, t$$

In the small-x region, the power-law spectrum xdN/dx scales as $1/\sqrt{x}$. The analytical solution is well-reproduced by the full QCD numerical model.

II. Treatments of different processes Inelastic interactions - $\mathbb{C}^{1 \leftrightarrow 2}$:

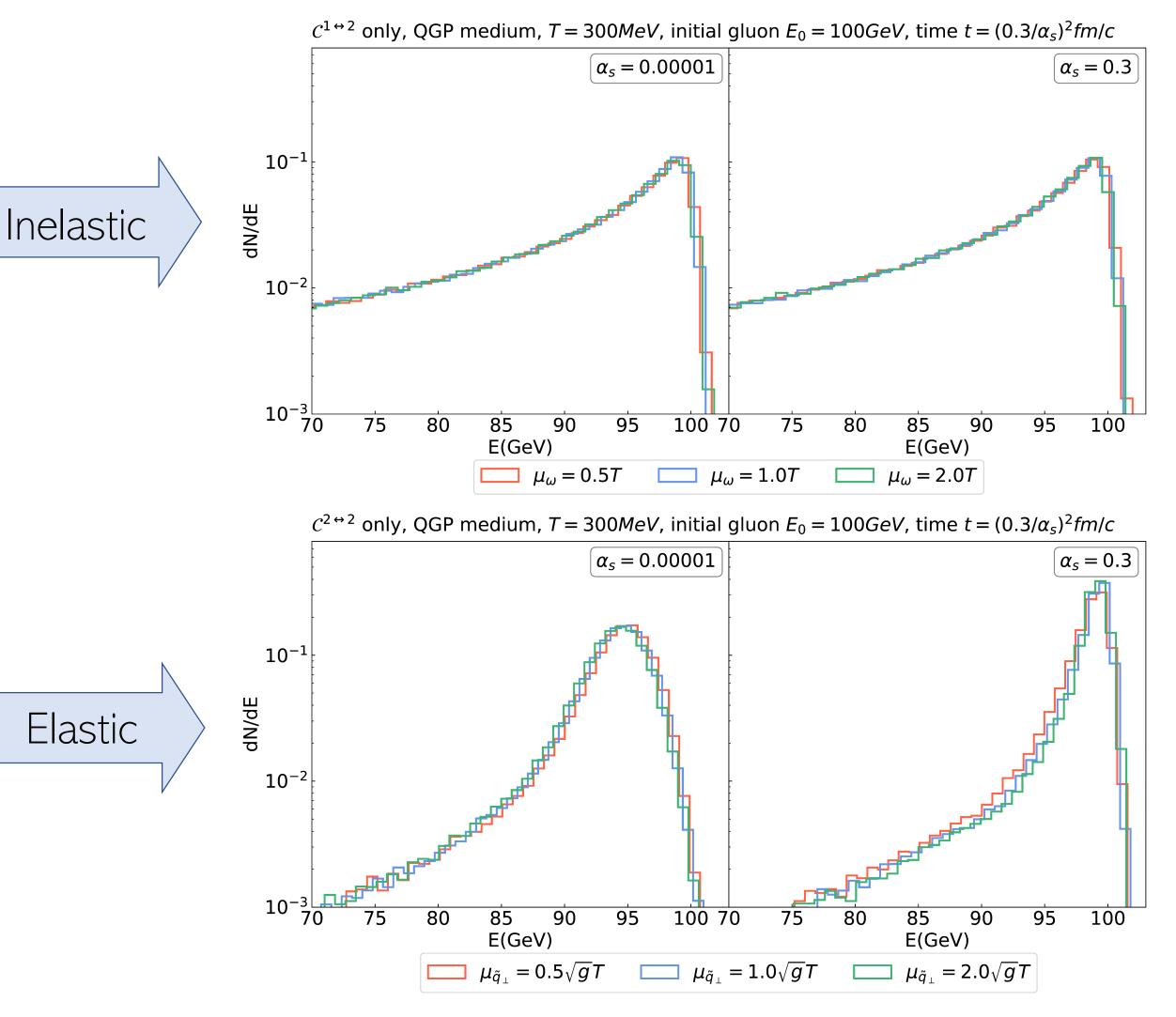




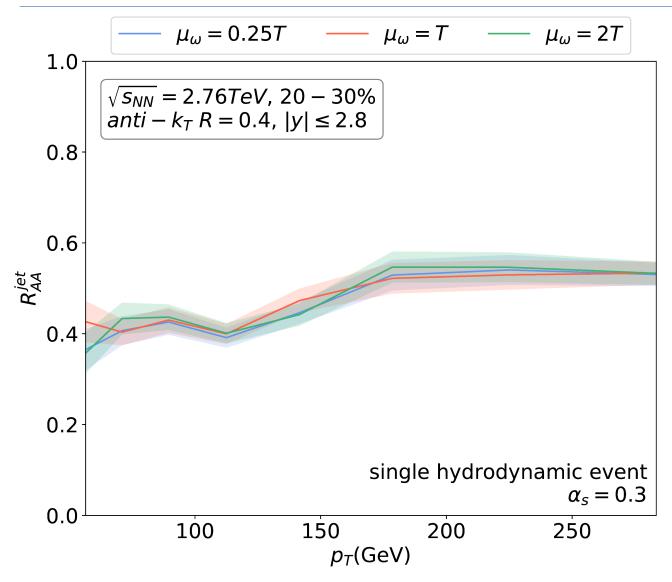
We add this reformulated model as a high-energy, low-virtuality module in the JETSCAPE framework².

IV. Cutoff dependence of energy distribution

We check the dependence of the single parton energy distribution on the hard-soft cutoff to validate the model.



V. R_{AA} dependence on soft-hard cutoff



- include both elastic and inelastic interactions
- realistic initial parton distribution is given by Pythia
- partons are produced at the center of the medium

 R_{AA} consistent with different inelastic cutoffs

VII. Outlook

- o apply Bayesian analysis on drag and diffusion coefficients
- o introduce running of the coupling

References

- 1. Ghiglieri, Moore, Teaney, JHEP03 (2016) 095
- 2. Putschke, et al., arXiv:1902.05934 (2019).
- 3. Blaizot, lancu, Mehtar-Tani. *PRL* 111.5 (2013):052001.

This work is supported by NSF grant ACI-1550225 and DOE grant DE-FG02-05ER41367.