

Highlights from ALICE

Michael Weber for the ALICE Collaboration

Harvest of the past ten years

System	Year(s)	√s _{NN} (TeV)	Recorded L _{int} (for muon triggers)		
	2010,2011	2.76	~75 µb ⁻¹		
Pb-Pb	2015	5.02	~0.25 nb⁻¹		
	2018	5.02	~0.55 nb ⁻¹		
Xe-Xe	2017	5.44	~0.3 µb ⁻¹		
n Dh	2013	5.02	~15 nb ⁻¹		
p–Pb	2016	5.02, 8.16	~3 nb ⁻¹ ; ~25 nb ⁻¹		
	2009-2013	0.9,2.76,7,8	~200 µb ⁻¹ ; ~100 nb ⁻¹ ; ~1.5 pb ⁻¹ ; ~2.5 pb ⁻¹		
рр	2015,2017	5.02	~1.3 pb ⁻¹		
	2015-2018	13	~36 pb ⁻¹		

New for QM 2019:

- Full 13 TeV pp data set with high-multiplicity triggers
- 2018 Pb-Pb with central and semi-central triggers
- Selected results out of 26 parallel talks,
 68 posters, and 18 new papers

Labels used in this presentation:

New since last QM

New Preliminary for QM

Final On arXiv for QM

Outline

Initial state

→ Hadronic structure and photoproduction

QGP - Macroscopic properties

→ Properties of QCD matter and the transition between phases

QGP - Microscopic dynamics

→ Degrees of freedom at each stage and their interactions

Small systems

 \rightarrow Unified picture of QCD particle production from small to larger systems

Hadron physics

→ LHC as laboratory for hadron interaction studies

ALICE parallel talks

Initial state

Low-mass dielectron measurements in pp. p-Pb and Pb-Pb collisions with ALICE at the LHC S. Scheid, 6 Nov 2019, 16:40

Macroscopic properties

Anisotropic flow fluctuations of charged and identified hadrons in Pb-Pb collisions with the ALICE detector Y. Zhu, 5 Nov 2019, 10:00

Recent results on event-by-event fluctuations in ALICE M. Arslandok. 5 Nov 2019. 11:00

Search for the chiral magnetic effect and the chiral magnetic wave with the ALICE experiment

Event shape dependence of anisotropic flow for inclusive and identified hadrons in Pb-Pb and Xe-Xe collisions with ALICE

Linear and non-linear flow modes of charged and identified particles in Pb-Pb collisions with ALICE

Spin alignment measurements of vector mesons with ALICE at the LHC

Microscopic properties

First direct measurement of the dead-cone effect at colliders using iterative declustering techniques in the Lund plane N. Zardoshti, 5 Nov 2019, 09:20

Recent quarkonium measurements in small systems with the ALICE detector at the LHC

Latest results on Λc and D production in pp and Pb-Pb collisions at √s_{NN} = 5.02 TeV with ALICE at the LHC G. Innocenti, 5 Nov 2019, 11:00

Beauty production with ALICE at the LHC

Quarkonium production in nucleus-nucleus collisions with ALICE

New results on light (anti-)(hyper-)nuclei production and hypertriton lifetime in Pb-Pb collisions at the LHC E. Bartsch, 5 Nov 2019, 15:40

Recent results on azimuthal anysotropies of open heavy-flavour particles with ALICE at the LHC

Light neutral meson production in heavy ion collisions with ALICE in the era of precision physics at the LHC M. Sas. 5 Nov 2019, 18:00 L. Havener, 6 Nov 2019, 09:00

Exploring the phase space of jet splittings in Pb—Pb and pp collisions at √s_{NN} =5.02 TeV in ALICE

Constraining the production mechanism of light (anti-)nuclei in small systems with ALICE at the LHC L. Barioglio, 6 Nov 2019, 11:00

Jet quenching and acoplanarity via hadron+jet measurements in pp and Pb-Pb collisions at √s_m = 5.02 TeV with ALICE <u>Y. Mao, 6 Nov 2019, 11:40</u>

Small Heavy-flavour jet production and correlations with ALICE

Search for jet quenching effects in high multiplicity proton-proton collisions at √s=13 TeV with ALICE P. Jacobs. 5 Nov 2019. 11:00

Latest results on the production of hadronic resonances in ALICE at the LHC A. Khuntia, 5 Nov 2019, 16:40

Light flavour hadron production vs. multiplicity in pp and in p-Pb collisions with ALICE S. Pisano, 6 Nov 2019, 11:40 Y. Sekiguchi, 6 Nov 2019, 15:00

Measurement of long-range two- and multi-particle correlations by ALICE

Hadron physics

First experimental test of HAL QCD lattice calculations for the multi strange hyperon - nucleon interaction with ALICE

Measurement of the anti-deuteron nuclear inelastic cross section with ALICE and implications for indirect Dark Matter searches

D.Mihaylov, 6 Nov 2019, 11:00 I. Vorobyev, 6 Nov 2019, 16:20

S. Aziz. 5 Nov 2019, 14:00

M. Besoiu, 5 Nov 2019, 16:20

J. Parkkila, 6 Nov 2019, 09:20

S. Kundu, 6 Nov 2019, 11:00

J. Ghosh, 5 Nov 2019, 10:00

D. Thomas, 5 Nov 2019, 12:00

X. Bai, 5 Nov 2019, 14:20

S. Tang, 5 Nov 2019, 16:40

J. Kvapil, 6 Nov 2019, 14:00

Upgrade

Upgrading the Inner Tracking System and the Time Projection Chamber of ALICE

F. Reidt, 5 Nov 2019, 18:20

ALICE posters

			-									LIC
A.	Sharma	Event	t-by-Event measurement of charge separation in Pb-Pb collisions at $\sqrt{s_{_{NN}}} = 5.02$ T	TeV .								
Q.	Shou	Charge dependent flow and the search for the chiral magnetic wave at the LHC with A		D. Sekiha	ata	Study of dielectron productions in Pb-Pb collisions at √s _{nn} = 5.02 TeV with ALICE						
L.	Husova	Two-particle correlations with high-pT Λ baryons and KOS mesons in pp collisions at A		E. Menin	no	Machine learning approach for studying of dielectrons from open charm and beauty decays in p-Pb collisions with ALICE at the LHC						
Z.	Khabanova	Collective effects in pp collisions with the balance function of the identified particles		D. Thakur I/w s		I/ψ production as a function of charged-pa	y_y production as a function of charged-particle multiplicity in pp collisions at $x_y' = 13$ TeV at forward rapidity with ALICE at the LHC					
C.	Mordasini	Multi-harmonic correlations in ALICE										
C.	Ristea	Using Event Shape Engineering to study anisotropic flow of inclusive and identified pa		A. Bell		Mid-rapidity J/ψ production as a function o	f charged-particle multiplic	olicity in proton-proton collisions at √s=13 TeV				
Δ	A. Danu Measurements of charge-dependent correlations in Xe-Xe collisions with ALICE		S. Hayas	Hayashi J/ψ production at mid-rapidity in p-Pb colli		ions with the ALICE detector						
			L. Michel	etti	J/psi polarization measurement in Pb-Pb collisions							
	Adolfsson		ring strangeness enhancement in small systems through Ξ -hadron correlations	A. Neagu	1	J/ψ elliptic flow at mid-rapidity in PbPb co	llsions at √s _{NN} = 5.02 TeV with ALICE		T. Herman	J/ψ production at	t forward rapidities in ultra-peripheral collisions in ALICE	
	Raniwala	Effect of longitudinal asymmetry on pseudorapidity distributions in PbPb collisions at		X. Bai		Nuclear modification factor $R_{\rm AA}$ of inclusive J/ψ at mid-rapidity in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=5$		Pb collisions at √s _{NN} = 5.0	O. Matonoha	Production of identified light flavour hadrons as a function of underlying event activity in collisions using the ALICE detector		
S.	Khan E. Meninno	Net-cl	harge fluctuations in pp, p-Pb, Pb-Pb and Xe-Xe collisions with ALICE Detector Charm production in pp and p-Pb collisions with ALICE at the LHC	L. Viebao	:h	Low-mass dielectron measurements in mi	nimum-bias pp collisions a	t 5.02 TeV with ALICE	Y. Minato	Performance evaluation of a Forward Calorimeter for ALICE upgrade		
	M. Cai		Non-prompt D0-meson production in Pb-Pb collisions at √s _{sss} = 5.02 TeV with A	A. Capon	ı	A multivariate approach to measuring low	-mass dielectrons in p-Pb (collisions at √s _{NN} = 5.02	D. Andreou	Towards improve	ed measurements with the upgrade of the ALICE Inner Tracking System	n in
	J. Zhu		https://alice-conferences.web.cern.ch/node/31810	H. Deger	hardt	Study of the charm quark production mec	hanisms through angular o	correlation of dielectron	WW 1:	LS3	LI L	
	S. Kar		Measurements of prompt D-meson production in p-Pb collisions with ALICE at	the LHC	R. Sahoo	Event shape and multiplicity de	pendence of K++ and ϕ pro	oduction in pp collisions	Y. Yamaguchi		racker: adding vertexing capability to the ALICE MUON Spectrometer	
	T. Cheng		Measurement of 50c baryon in pp collisions with ALICE at the LHC		B. Lim	Charged-particle multiplicity de	pendence of Σ(1385)± and	∃ (1530)° production in	K. Kamano	Quantitative eva with Muon Forw	sluation of muon track matching efficiency ard Tracker and Muon Spectrometer at ALICE	
	Z. Zhang	Open heavy-flavour hadron decay muon v2 in p⊷Pb collisions at √s _{sus} =8.16~		TeV with #	R. Rath	Insight into K*(892)0 production	n in pp collisions as a function of collision energy,		T. Osako		tion measurement for detecting ultra-intense magnetic field in Pb-Pb ALICE experiment	
	R. Singh	D + meson production as a function of charged particle multiplicity in pp at v		/s = 13 Te	D. Mallick	Hadronic resonance production	in asymmetric collisions w	vith ALICE at the LHC	B.Nielsen	The ALICETPC: U	Ipgrade and Physics Perspectives	
	S. Sakai		Measurement of heavy flavour jets with electrons from heavy-flavour hadron		P. Larionov	Production of pions, kaons and	protons in p-Pb collisions	L. Havener	Machine Learning B	lased Jet pT Reconsti	ruction with Full Jets in ALICE	
	R. Bala		D+ meson production in pp, p-pb and Pb-Pb collisions at √s= 5 TeV with ALIC		M. Sharma	K _s and Λ production in p-Pb col	lision system at 8.16 TeV	O. Saarimaki	Dijet invariant mass	s in pp and pPb col	lisions with ALICE	
	S. Rode				P. Huhn	Charged-particle production as	function of event multipli	K, Lapidus	Substructure-based	I classification of me	dium-modified jets	
	M. Faggin			T COMISION	A. Khuntia	Insight into Multiplicity Depende	dence of Strangeness and Y. Dang Semi-inclusive hadron-jet producti		ron-jet productions i	n pp collisions at 5.02 TeV with ALICE		
	K. Tadokoro			at√s =	A. Nassirpo	rpour Identified light flavor particle production in "		Y. Hou	Multiplicity dependent charged jet production in pp collisions at \sqrt{s} = 13 TeV			
					D. Pistone	Charged-particle multiplicity de	pendence of K*(892)* res	Y. Wu	Production of J/ψ me	esons in jets at mid-	rapidity in pp collisions at $\sqrt{s} = 13$ TeV with ALICE	
	H. Zanoli		Azimuthal anisotropy of heavy-flavour electrons in p-Pb collisions with ALICE		J. Song	Recent Measurements of Hadro	nic Resonances in Small S	P. Cui			ction in jets and two-particle correlations with high- $ ho_{ au}$ V0 particles in	
	J. Park	RAA of electrons from beauty-hadron decays in Pb-Pb collisions at 5.02 TeV with AL								ems with ALICE at th		
	M. Zhao	M. Zhao Study of W±boson production in pPb and PbPb collisions at √s _{NN} =5.02 T			with ALICE at the LHC			F. Acosta	Isolated Photon-Had	dron Correlations in	pp and pPb Collisions at $\sqrt{s_{NN}}$ = 5 TeV in ALICE	
	S. Trogolo D mesons production in Pb-Pb collisions with ALICE at the LHC							M. Takamura The neutral meson measurement in jel		measurement in jets	s in PbPb collisions in ALICE	
	D. Godoy hapes of jets containing electrons from heavy-flavour hadron decays in pp of			ollisions at √s	sions at √s= 13 TeV at ALICE			R. Xu	Isolated photon pro	Isolated photon production in pp collisions at \sqrt{s} =13 TeV measured with ALICE		
Ous	Quark Matter Wuhan 04-09 Nov 2019					Michael Weh	er (SMI)	A. Liu	Photon identification	n in the ALICE EMCa	l using a neural network and template fit	7

Publications for QM

Production of charged pions, kaons and (anti-)protons in Pb-Pb and inelastic pp collisions at $\sqrt{s_{_{\rm NN}}}$ = 5.02 TeV	arXiv:1910.07678 [nucl-ex]
Measurement of electrons from semileptonic heavy-flavour hadron decays at midrapidity in pp and Pb-Pb collisions at $\sqrt{s_{_{NN}}}$ = 5.02 TeV	arXiv:1910.09110 [nucl-ex]
Measurement of the (anti-)3He elliptic flow in Pb-Pb collisions at $\sqrt{s_{_{\rm NN}}}$ = 5.02 TeV	arXiv:1910.09718 [nucl-ex]
Longitudinal and azimuthal evolution of two-particle transverse momentum correlations in Pb-Pb collisions at $\sqrt{s_{_{ m NN}}}$ = 2.76 TeV	arXiv:1910.14393 [nucl-ex]
Investigation of the p-Σ0 interaction via femtoscopy in pp collisions	arXiv:1910.14407 [nucl-ex]
Global baryon number conservation encoded in net-proton fluctuations measured in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV	arXiv:1910.14396 [nucl-ex]
Measurement of spin-orbital angular momentum interactions in relativistic heavy-ion collisions	arXiv:1910.14408[nucl-ex]
Inclusive Y production in p-Pb collisions at $\sqrt{s_{NN}}$ = 8.16 TeV	arXiv:1910.14405 [nucl-ex]
Centrality and transverse momentum dependence of inclusive J/ ψ production at midrapidity in Pb-Pb collisions at $\sqrt{s_{_{NN}}}$ = 5.02 TeV	arXiv:1910.14404 [nucl-ex]
Azimuthal correlations of prompt D mesons with charged particles in pp and p-Pb collisions at $\sqrt{s_{_{NN}}}$ = 5.02 TeV	arXiv:1910.14403 [nucl-ex]
Probing the effects of strong electromagnetic fields with charge-dependent directed flow in Pb-Pb collisions at the LHC	arXiv:1910.14406 [nucl-ex]
Measurement of electrons from heavy-flavour hadron decays as a function of multiplicity in p-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV	arXiv:1910.14399 [nucl-ex]
Jet-hadron correlations measured relative to the second order event plane in Pb-Pb collisions at $\sqrt{s_{_{\rm NN}}}$ = 2.76 TeV	arXiv:1910.14398 [nucl-ex]
Evidence of rescattering effect in Pb-Pb collisions at the LHC through production of K*(892)0 and ϕ (1020) mesons	arXiv:1910.14419 [nucl-ex]
Multiplicity dependence of K*(892)0 and ϕ (1020) production in pp collisions at \sqrt{s} = 13 TeV"	arXiv:1910.14397 [nucl-ex]
Production of (anti-)3He and (anti-)3H in p-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV	arXiv:1910.14401 [nucl-ex]
K*(892)0 and $φ$ (1020) production at midrapidity in pp collisions at $√s = 8$ TeV	arXiv:1910.14408 [nucl-ex]
Study of underlying event properties in pp collision at 13 TeV with ALICE at the LHC	arXiv:1910.14400 [nucl-ex]

Initial state

- → Hadronic structure and photoproduction
- QGP Macroscopic properties
- QGP Microscopic dynamics
- Small systems
- Hadron physics

Probing nuclear Parton Distribution Functions

 Probe nPDFs with quasi-real photon in ultra-peripheral Pb-Pb collisions

Probing nuclear Parton Distribution Functions

- Probe nPDFs with quasi-real photon in ultra-peripheral Pb-Pb collisions
 - First ALICE paper from 2018 Pb-Pb run

Probing nuclear Parton Distribution Functions

- Probe nPDFs with quasi-real photon in ultra-peripheral Pb-Pb collisions
 - First ALICE paper from 2018 Pb-Pb run

- Probe **nPDFs** with partons in initial state and colour neutral final state
 - Improved stat. Precision

Photoproduction with nuclear overlap

• Coherent photoproduction of J/ψ in peripheral Pb-Pb collisions

Photoproduction with nuclear overlap

- Coherent photoproduction of J/ψ in peripheral Pb-Pb collisions
 - Significant signal in dielectron and dimuon channel
 - Cross section extracted at mid- and forward rapidity

15

- Coherent photoproduction of J/ψ in peripheral Pb-Pb collisions
- Low transverse momentum dielectron excess in continuum region also below the J/ψ mass
 - Excess > 3σ at LHC

→ Photoproduction also at LHC, baseline for more differential studies

Initial state

QGP - Macroscopic properties

- → Properties of QCD matter and the transition between phases
- QGP Microscopic dynamics Small systems Hadron physics

PID flow: Y. Zhu, 5 Nov 2019, 10:00

Going beyond measuring v_n

- Full set of particle species available
 - Mass ordering (low p_{τ})
 - Quark content grouping (high p_{τ})

Flow: identified particles

Going beyond measuring v_n

- Full set of particle species available
 - Mass ordering (low p_{τ})
 - Quark content grouping (high p_{τ})
- First experimental PID v_{2} {4}

Going beyond measuring v_n

- Full set of particle species available
 - Mass ordering (low p_{τ})
 - \circ Quark content grouping (high $p_{\scriptscriptstyle T}$)
- First experimental PID v_2 {4}

$$\sigma_{\nu_n} \approx ((\nu_n \{2\}^2 - \nu_n \{4\}^2)/2)^{1/2}$$

$$F(v_n) = \frac{\sigma_{v_n}}{\langle v_n \rangle}$$

- First measurement of relative flow fluctuations for identified hadrons
 - → Characterising flow distribution (medium response) for full set of particle species

Flow: identified particles

Going beyond measuring v_n

H. Niemi, G. S. Denicol, H. Holopainen, P. Huovinen, Phys.Rev.C87 054901 (2013)

Relation between v_n and ε_n

- Linear:
 - e.g. $\varepsilon_3 \rightarrow V_3$
- Non-linear: e.g. ε_2 and $\varepsilon_3 \rightarrow V_5$

Initial spatial anisotropy ε_{n}

 \rightarrow Non-linear flow modes of identified particles follow same trend as v_n

ALI-PREL-324091

- Initial angular momentum L
- Spin-orbit coupling of vector mesons (spin 1): Polarization ρ_{00}

ALICE, arXiv:1909.01281 [nucl-ex]

300

 $\langle N_{\text{part}} \rangle$

100

200

300

 $\langle N_{\rm part} \rangle$

100

200

Angular momentum and magnetic field

24

- Strong magnetic field B
- Charge-dependent flow v₁ of heavy- and light quark particles
 - sensitive to early / late times

Angular momentum and magnetic field

S. Tang, 5 Nov 2019, 16:40 ALICE

- Strong magnetic field B
- Charge-dependent flow v₁ of heavy- and light quark particles
 - sensitive to early / late times
- Effect for D mesons about three orders of magnitude larger than that of charged hadrons
- \rightarrow Significance ~2.5 σ ; to be confirmed with higher statistics data in future (Run 3-4)

ALICE, arXiv:1910.14406 [nucl-ex]

Local parity violation + strong magnetic field

- Splitting of same and opp. sign correlators
 - Main question: background?
- First measurement in Xe-Xe collisions
 - Expect weaker magnetic field
 - → Smaller splitting

Local parity violation + strong magnetic field

- Splitting of same and opp. sign correlators
 - Main question: background?
- First measurement in Xe-Xe collisions
 - Expect weaker magnetic field
 - \rightarrow Smaller splitting

 \rightarrow Splitting in Xe-Xe and Pb-Pb similar

 \rightarrow Indicates large background contribution (coupled to v_2)

ALI-PREL-327003

Event-by-event fluctuations

- Measure net-baryon fluctuations: sensitive to phase transitions
 - Third moments with precision of ~5%
 - Lattice QCD expectation $\kappa_3/\kappa_2 \sim 0$
 - $_{ extstyle o}$ Baseline set for higher moments in Run 3-4 aiming at $\kappa_{_{\! extstyle extstyle o}}$

Event-by-event fluctuations

- Third moments with precision of ~5%
- Lattice QCD expectation $\kappa_2/\kappa_2 \sim 0$

$_{ o}$ Baseline set for higher moments in Run 3-4 aiming at $\kappa_{_6}$

- Net-charge fluctuations:
 - "Trivial" multiplicity scaling not removed yet

Initial state

- QGP Macroscopic properties
- **QGP Microscopic dynamics**
- → Degrees of freedom at each stage and their interactions
- Small systems
- Hadron physics

Nuclear modification factor - light flavour

Nuclear modification factor - light flavour

33

Also neutral particles enter high quality era

• π^0 down to 0.4 GeV/c

Also neutral particles enter high quality era

- π^0 down to 0.4 GeV/c
- η down to 0.8 GeV/c

in Pb-Pb collisions!

Good prospects for direct photon measurements

→ First measurement of HF production in heavy-ion collisions at LHC down to 0 GeV/c

Charm quark energy loss

36

- Compare data and models for R_{AA} and v_2 simultaneously
 - → first step to really distinguish different geometry and energy loss models

Beauty quark energy loss

37

Non-Prompt D mesons and electrons from beauty decays

- Compare data and models for $R_{\Delta\Delta}$ and V_2 simultaneously
 - → first step to really distinguish different geometry and energy loss models

The heavy flavour family picture

39

Λ_c/D ratio

- Sensitive to hadronisation mechanism
 - Recombination → enhancement

ALI-PREL-325749

G. Innocenti, 5 Nov 2019, 11:00

Λ_c/D ratio

- Sensitive to hadronisation mechanism
 - Recombination → enhancement
 - Already an enhancement in small systems

ALI-PREL-323761

Λ_c/D ratio

- Sensitive to hadronisation mechanism
 - Recombination → enhancement
 - Already an enhancement in small systems
- Multiplicity dependence in pp collisions

Λ_a/D ratio

G. Innocenti, 5 Nov 2019, 11:00

Λ_a/D ratio

- Sensitive to hadronisation mechanism
 - Recombination → enhancement
 - Already an enhancement in small systems
- Multiplicity dependence in pp collisions
 - Enhancement over default Pythia
 - Color reconnection models describe data (but cross section not reproduced)

ee.ep

HF jets: J. Kvapil, 6 Nov 2019, 14:00 **Lc and D:** G. Innocenti, 5 Nov 2019, 11:00

Λ_c/D ratio

- Sensitive to hadronisation mechanism
 - Recombination → enhancement
 - Already an enhancement in small systems
- Multiplicity dependence in pp collisions
 - Enhancement over default Pythia
 - Color reconnection models describe data
- Fragmentation function of Λ_c
 - Shape similar to Pythia

Λ_c/D ratio

- Sensitive to hadronisation mechanism
 - Recombination → enhancement
 - Already an enhancement in small systems
- Multiplicity dependence in pp collisions
 - Enhancement over default Pythia
 - Color reconnection models describe data
- Fragmentation function of Λ_c
 - Shape similar to Pythia
- Another player in this game: Ξ_c/D^0 that is also higher than Pythia expectations
 - \rightarrow Global charmed baryon-to-meson enhancement $p_{_{\rm T}}$ -dependent over lepton collider expectations

 $p_{_{\mathrm{T,jet}}}\left(\mathrm{GeV}/c\right)$

45

Jet energy loss

- Significant quenching in central Pb-Pb collisions
 - \rightarrow Pushing down in p_{T} and to larger jet R
 - Challenging of inclusive jet measurements in HI is the huge background

Jet energy loss

Option 1) Using Machine Learning for background estimation

- Improve resolution compared to the standard area-based method
- But purely based on Pythia (fragmentation)

 \rightarrow R_{AA} for independent of jet R also

at low p_{T}

Pb-Pb: <u>Y. Mao, 6 Nov 2019, 11:40</u>

Option 1) Using Machine Learning for background estimation

- Improve resolution compared to the standard area-based method
- But purely based on Pythia

Option 2) Semi-inclusive recoil jet measurements

- suppress the uncorrelated background in HI collisions
- Data-driven method to extract I_{AA}
 - → Down to 20 GeV/c

Constrain parton (in-medium) radiation by declustering reconstructed jets

Jet substructure

Constrain parton (in-medium) radiation by declustering reconstructed jets

$$m{z}_{
m g} = rac{\min(m{
ho}_{
m Ti},m{
ho}_{
m Tj})}{m{
ho}_{
m Ti} + m{
ho}_{
m Tj}}$$

Shared momentum fraction between two subjets in parton shower

Study momentum fraction $z_{\rm g}$ for small and large angles of first hard splitting

Jet substructure

L. Havener, 6 Nov 2019, 09:00 ALICE

Constrain parton (in-medium) radiation by declustering reconstructed jets

$$oldsymbol{z_{ ext{g}}} = rac{\min(oldsymbol{
ho_{ ext{Ti}}}, oldsymbol{
ho_{ ext{Tj}}})}{oldsymbol{
ho_{ ext{Ti}}} + oldsymbol{
ho_{ ext{Tj}}}}$$

Shared momentum fraction between two subjets in parton shower

Study momentum fraction $z_{\rm g}$ for small and large angles of first hard splitting

- Enhancement for small angles
- Suppression for large angles

Coherence effect of QCD

Suppression of emissions from a radiator (quark) within $\theta < m_a/E_a$

- Deconvolute the jet via iterative declustering until small-angle splittings are probed
- Study angle of splittings for charm and inclusive (light-flavour) jets

- Coherence effect of QCD
- Suppression of emissions from a radiator (quark) within $\theta < m_g/E_g$

- Deconvolute the jet via iterative declustering until small-angle splittings are probed
- Study angle of splittings for charm and inclusive (light-flavour) jets
 - Charm: larger angles
- → First direct measurement of the dead cone

Pb-Pb: X. Bai, 5 Nov 2019, 14:20

O ALICE

Quarkonia R_{AA}

- Clear rapidity dependence of $J/\psi R_{AA}$ at low p_{T}
 - Consistent with regeneration models

Quarkonia R

- Clear rapidity dependence of $J/\psi R_{\Lambda\Lambda}$ at low p_{τ}
 - **Consistent with regeneration models**

Quarkonia v_2

- Large $J/\psi v_3$ in large p_{τ} range
 - Regeneration: J/ψ inherits elliptic flow of charm quarks)
 - Additional mechanisms at work?

Quarkonia R_{AA}

- Clear rapidity dependence of $J/\psi R_{\Delta\Delta}$ at low p_{T}
 - Consistent with regeneration models

Quarkonia v_2

- Large $J/\psi v_2$ in large p_T range
 - Regeneration: J/ψ inherits elliptic flow of charm quarks)
 - Additional mechanisms at work?
- First measurement of Y (bottomonium) flow
 - $v_2 \sim 0$

 \rightarrow Not yet sensitive to distinguish models \rightarrow Run 3-4

Pb-Pb: <u>E. Bartsch, 5 Nov 2019, 15:40</u>

Production mechanism of A=3 nuclei

Thermal, coalescence, ...?

Pb-Pb: E. Bartsch, 5 Nov 2019, 15:40

Production mechanism of A=3 nuclei

Thermal, coalescence, ...?

Yields and ratios

- First (anti-)triton spectra in Pb-Pb collisions
- 3He/p increases by one order of magnitude

Formation of light nuclei

58

Production mechanism of A=3 nuclei

• Thermal, coalescence, ...?

Yields and ratios

- First (anti-)triton spectra in Pb-Pb collisions
- ³He/p increases by one order of magnitude

Light nuclei flow

- ³He described by hydro + coalescence
- → Not sensitive enough with compact nuclei
- → Need wider nuclei (hypernuclei) → Run 3-4

Initial state

- QGP Macroscopic properties
- QGP Microscopic dynamics

Small systems

→ unified picture of QCD particle production from small to larger systems Hadron physics

Collective flow

60

- Largest eta range studied at LHC in pp/p-Pb collisions
- Correlations in small systems extend to large pseudorapidities
 - \rightarrow Ridge up to $\Delta \eta \sim 8$

Collective flow

61

- Largest eta range studied at LHC in pp/p-Pb collisions
- Correlations in small systems extend to large pseudorapidities
 - \rightarrow Ridge up to $\Delta \eta \sim 8$ (v_2 in high-multiplicity p-Pb comparable with peripheral Pb-Pb)

Hadronic resonances A. Khuntia, 5 Nov 2019, 16:40 LF production, small systems S. Pisano, 6 Nov 2019, 11:40

Strangeness enhancement/suppression

- Focus on multi-strange particles, e.g. Ξ
- Strongly suppressed in small systems

Strangeness enhancement/suppression

- Focus on multi-strange particles, e.g. **E**
- Strongly suppressed in small systems
- Correlations between s-\overline{s}?
 - Study Ξ-K correlations
 - → Not well described by models

Strangeness enhancement/suppression

- Focus on multi-strange particles, e.g. **Ξ**
- Strongly suppressed in small systems
- Correlations between s-\overline{s}?
 - Study **Ξ**-K correlations

Jet-bias

• Can be disentangled/reduced with transverse activity R_{τ}

Strangeness enhancement/suppression

- Focus on multi-strange particles, e.g. **Ξ**
- Strongly suppressed in small systems
- Correlations between s-s?
 - Study **Ξ**-K correlations

Jet-bias

- Can be disentangled/reduced with transverse activity $R_{\scriptscriptstyle T}$
- vary underlying event and jet contributions
- \rightarrow hard component (low R_{T}): smaller particle ratios
- \rightarrow soft component (high R_{T}): larger particle ratios

Low mass dileptons

- Collision system scan at same energy
 - \rightarrow Dielectron R_{AA} , R_{DPb}

Low mass dileptons

- Collision system scan at same energy
 - → Dielectron R_{AA}, R_{pPb}
- Soft dielectron enhancement at low masses
 - **75 MeV/c single lepton** p_T cut (running ALICE with low field B = 0.2 T)
 - Confirming AFS@ISR
 - Study multiplicity dependence
 - → Insights on source

Soft dielectron enhancement vs. $p_{_{\mathrm{T}}}$

Initial state

- QGP Macroscopic properties
- QGP Microscopic dynamics
- Small systems

Hadron physics

→ LHC as laboratory for hadron interaction studies

ALICE measurement setting new standards
 S. Acharya et al., Phys. Lett. B 797 (2019) 134905

- ALICE measurement setting new standards
 S. Acharya et al., Phys. Lett. B 797 (2019) 134905
- Adding 2018 data + Machine Learning methods
 - single measurement same error bars as world average
 - $_{\rightarrow}$ Exclude large deviations from free Λ life time

- Constrain interaction parameters with non-traditional femtoscopy
 - Revert logic: source size → interaction

Hadron interactions

D-A

- Revert logic: source size → interaction
- Large set of particle pairs studied in ALICE in small collisions systems, pp and p-Pb collisions

<u>ALICE, Phys.Rev.Lett. 123 (2019) no.11, 112002</u>, p-Ξ

<u>ALICE, Phys. Lett. B 797 (2019) 134822,</u> Λ-Λ

ALICE, arXiv:1905.13470 [nucl-ex], p-K-

- Constrain interaction parameters with non-traditional femtoscopy
 - Revert logic: source size → interaction
- Large set of particle pairs studied in ALICE in small collisions systems, pp and p-Pb collisions

ALICE, Phys.Rev.Lett. 123 (2019) no.11, 112002, p-Ξ-ALICE, Phys. Lett. B 797 (2019) 134822, Λ-Λ

ALICE, arXiv:1905.13470 [nucl-ex], p-K-

ALICE, arXiv:1910.14407 [nucl-ex], p- Σ^0

→ Large masses: bridging the gap to Lattice QCD

Quark Matter, Wuhan, 04-09 Nov 2019

Michael Weber (SMI)

74

- Use ALICE as target
- anti-deuteron inelastic cross section from raw \overline{d} / d ratio at low momenta

Anti-deuteron inelastic cross section

- **Use ALICE as target**
- anti-deuteron inelastic cross section from raw d / d ratio at low momenta
 - So far unconstrained
 - → setting new limits is relevant for astrophysics (dark matter searches)

New ITS: Better vertexing

And many more detector upgrades and detectors (MFT, FIT, ...)

... and the next ten years

LS2: ALICE upgrade and installation

2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
	utdown 2	J FMAMJJASOND	J FMAMJ J ASOND	J FMAMJ J AS OND		shutdown 3	J FMAMJ J ASOND	J FMAMJ J ASOND	J FMAMJ JASOND	JIFMAMJJASONI	LS4

Restart operations in 2020/21

... and the next ten years

LS2: ALICE upgrade and installation

LS3: possible ALICE upgrades

ITS3 ALICE-PUBLIC-2018-013

FoCal ALICE-PUBLIC-2019-005

2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Long shu	JFMAMJJASIOND	J FMAM J J ASOND	JFMAMJJASOND	JFMAMJJASOND		JIFMAMJJASOND S shutdown 3	J FMAMJJASOND	JIFMAMJJASOND	J FMAM J JASOND	JFMAMJJASOND	JFMAMJJASOND

experimentally established, studies of heavy-ion collisions at the LHC (by the dedicated experiment ALICE, as well as the other experiments) and at RHIC (Brookhaven) have been a constant source of surprises, driving the theory developments. The observation of collective effects in pp collisions came as another surprise and opened a new area of studies for the heavy-ion community. A high-energy AA/pA/pp research programme at present and future colliders would be unique to Europe and would lead to a profound understanding of hot and dense QCD matter.

Continue Heavy Ion physics at LHC beyond 2030

from European Particle Physics Strategy update arXiv:1910.11775 [hep-ex]

(Physics Briefing Book)

Future heavy-ion detector

Design guidelines

- high rate capability: L_{NN} up to 10^{34} /cm²/s (~ 20 to 50 × Run 3,4)
- improve vertexing
 - ultra-thin waver-scale sensors, truly cylindrical shape, inside beam pipe
 - spatial resolution ~ 1 μm
 - material thickness < 0.05% X₀/layer
- · improve tracking precision and efficiency
 - ~ 10 layers, out to 1 m radius
 - space resolution ~ 5 μm out to 1 m
 - whole tracker, less than 6% X₀
- tracking over wide range of p_T (down to tens of MeV/c) and rapidity ($|\eta| \le 4$)
- B < 0.5 T would be sufficient, 1 T or higher also considered

Physics potential (just few examples)

- heavy flavours, quarkonia
 - multi-heavy flavoured hadrons $(\Xi_{cc}, \Omega_{cc}, \Omega_{cc})$
 - γ_c states
 - B mesons at low p_T
 - X, Y, Z states
- low-mass dielectrons
 - chiral symmetry restoration
 - thermal continuum (virtual photons)
- soft hadronic and electromagnetic radiation
 - hadrons down to a few 10's of MeV/c
 - photons down to ~ 50 MeV/c
 - ultra-soft photons down to MeV scale with dedicated forward spectrometer
- BSM
 - dark photons searches
 - ...

EoI document signed by ~400 physicists (Dec 2018) submitted to European Strategy for Particle Physics Preparatory Group <u>arXiv:1902.01211</u>

Summary

Full Run 1 and 2 data set available

- Central and semi-central triggers
- Low B field data
 - \rightarrow Larger precision, extending to low p_{τ} , more differential, new analyses

New insights

- Initial state: nPDFs and photoproduction
- Macroscopic properties: spin, magnetic field, CME, medium response, phase transition
- Microscopic properties: parton energy loss, jet substructure, dead cone, heavy quark hadronisation, charmonia, light nuclei formation
- System evolution: Flow, strangeness, dielectrons
- Hadron physics: hypertriton, hadron-hadron interactions, connection to astrophysics

Open questions:

- ALICE upgrade: order(s) of magnitude more events, better detectors, pushing the limits even further (event-by-event fluctuations, HF baryons, low mass dileptons, hypernuclei, etc.)
- And thinking forward: heavy ion physics at LHC after 2030

→ welcome input from new groups