Highlights from the LHCb experiment

Benjamin Audurier* on the behalf of the LHCb collaboration

Thanks to all the collaboration!

*benjamin.audurier@cern.ch
The LHCb detector

LHCb: single arm spectrometer fully instrumented in pseudo-rapidity range $2 < \eta < 5$

- Track reconstruction **down to** $p_T = 0$.
- Excellent p_T and mass resolution.
- Excellent particle identification.
- Precision vertex reconstruction.

10.1142/S0217751X15300227
The LHCb detector

Can operate both in pp/pPb/PbPb and fixed-target!

Fixed-target mode: unique at LHC!
• Injecting gas in the LHCb VErtex LOcator (VELO) tank.
• Noble gas only: He, Ne, Ar
• Gas pressure: 10^{-7} to 10^{-6} mbar
LHCb : general purpose detector for heavy-ions
LHCb: general purpose detector for heavy-ions

Hadronic and QGP physics

Gluon saturated region

Large phase space coverage
LHCb: general purpose detector for heavy-ions

Hadronic and QGP physics

- **Collider mode:**
 - Detector is well suited to constrain (n)PDFs.
 - New PbPb dataset reaching 60% in centrality.

Gluon saturated region

Large phase space coverage
LHCb : general purpose detector for heavy-ions

Hadronic and QGP physics

- **Collider mode:**
 - Detector is well suited to constrain (n)PDFs.
 - New PbPb dataset reaching 60% in centrality.

- **Fixed-target program:**
 - (n)PDFs studies.
 - Test cosmic physics in laboratory.

Benjamin Audurier - benjamin.audurier@cern.ch
LHCb: general purpose detector for heavy-ions

Hadronic and QGP physics

- **Collider mode:**
 - Detector is well suited to constrain (n)PDFs.
 - New PbPb dataset reaching 60% in centrality.

UPC physics

- **Fixed-target program:**
 - (n)PDFs studies.
 - Test cosmic physics in laboratory.

- **p_T resolution:** key to ultra-peripheral PbPb collisions.
- UPC physics can be extended to pA and fixed-target.

LHCb - general purpose detector for heavy-ions

- **8.16 TeV pPb**
 - LHCb
 - ATLAS/CMS
 - ALICE
 - ALICE Muon

- **Other Collision Systems**
 - LHCb 110 GeV
 - HERA

- **Q^2 (GeV^2)**

- **x**

- **Gluon saturated region**

- **Large phase space coverage**

Benjamin Audurier - benjamin.audurier@cern.ch
LHCb : general purpose detector for heavy-ions

Hadronic and QGP physics

- **Collider mode:**
 - Detector is well suited to constrain (n)PDFs.
 - New PbPb dataset reaching 60% in centrality.

- **Fixed-target program:**
 - (n)PDFs studies.
 - Test cosmic physics in laboratory.

Large phase space coverage

UPC physics

- **p_T resolution** : key to ultra-peripheral PbPb collisions.
- **UPC physics** can be extended to pA and fixed-target.

Benjamin Audurier - benjamin.audurier@cern.ch
LHCb physics program

Large variety of samples to study!

Two new samples: PbNe at $\sqrt{s_{NN}} = 68.6$ GeV and PbPb at $\sqrt{s_{NN}} = 5.02$ TeV

Fixed-target mode samples

Collider mode samples

~ 20 times 2015 luminosity
LHCb program this week
List of contributions

<table>
<thead>
<tr>
<th>Speaker</th>
<th>Parallel talk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hengne Li</td>
<td>Charmonium production in Pb-Pb ultra-peripheral collisions (UPC) and Z production in pPb collisions at LHCb</td>
</tr>
<tr>
<td>John Matthew Durham</td>
<td>LHCb measurements of the exotic tetraquark candidate X(3872) in high multiplicity pp and pPb collisions</td>
</tr>
<tr>
<td>Shanzhen Chen</td>
<td>Open and hidden beauty production in pPb collisions at LHCb</td>
</tr>
<tr>
<td>Pasquale Di Nezza</td>
<td>LHC Run 3 and Run 4 prospects for heavy-ion physics with LHCb</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Speaker</th>
<th>Posters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jianqiao Wang</td>
<td>open charm production at LHCb in pPb</td>
</tr>
<tr>
<td>Felipe Andres Garcia Rosales</td>
<td>Fixed-target collisions at LHCb</td>
</tr>
<tr>
<td>Jana Crkovska</td>
<td>Charmonia production in pPb collisions at LHCb</td>
</tr>
<tr>
<td>Samuel Belin</td>
<td>Open Heavy-Flavour and J/psi production in peripheral PbPb collisions at LHCb</td>
</tr>
<tr>
<td>Maitreyee Mukherjee</td>
<td>Probing small-x gluons with gamma+hadron correlations in the forward rapidity with the LHCb detector.</td>
</tr>
</tbody>
</table>

4 talks

5 posters

- Many new results for QM19, talk with our speakers for more insights!
$X(3872)/\psi(2S)$ in pp and pPb collisions at 8 TeV
X(3872) : exotic state still not understood.

- Tetraquark / hadronic molecule / something else ?
X(3872)/ψ(2S) in pp and pPb collisions at 8 TeV

- X(3872): exotic state still not understood.
 - Tetraquark / hadronic molecule / something else?
- X(3872)/ψ(2S) ratio versus N_{tracks} measured in pp collisions at √s = 8 TeV.
X(3872)/ψ(2S) in pp and pPb collisions at 8 TeV

❖ X(3872) : exotic state still not understood.
 ▷ Tetraquark / hadronic molecule / something else ?

❖ X(3872)/ψ(2S) ratio versus N_{tracks} measured in pp collisions at $\sqrt{s} = 8$ TeV.

❖ Baseline for a future pPb analysis !
Open and hidden beauty production in pPb collisions
Open and hidden beauty production in pPb collisions

- Relative production of upsilon states to test cold (hot ?) nuclear matter effects in pPb collisions.
- Relative $\Upsilon(2S)/\Upsilon(1S)$ and $\Upsilon(3S)/\Upsilon(1S)$ suppression measured in pPb and PbP at $\sqrt{s_{NN}} = 8$ TeV down to zero p_T.
- **Good agreement** between data and predictions when including co-movers effects.

Shanzhen Chen - Wed. at 4:40 pm

JHEP11(2018)194
Open and hidden beauty production in pPb collisions

- Relative production of upsilon states to test cold (hot?) nuclear matter effects in pPb collisions.
- Relative $\Upsilon(2S)/\Upsilon(1S)$ and $\Upsilon(3S)/\Upsilon(1S)$ suppression measured in pPb and PbP at $\sqrt{s_{NN}} = 8$ TeV down to zero p_T.
- Good agreement between data and predictions when including co-movers effects.
- Beauty mesons and baryon measured in pPb/PbP collisions at $\sqrt{s_{NN}} = 8$ TeV
- Extensive studies show good agreement between data and model predictions.

Shanzhen Chen - Wed. at 4:40 pm

Benjamin Audurier - benjamin.audurier@cern.ch
Open and hidden charm production in pPb collisions

❖ Preliminary results for D⁰ cross-section in pPb/Pbp collisions at \(\sqrt{s_{\text{NN}}} = 8 \text{ TeV} \) up to \(p_T = 16 \text{ GeV/c} \).

❖ Improved statistics by factor 20 compared to previous LHCb results.

❖ Tension between data and nPDFs predictions. Additional effects required.

Benjamin Audurier - benjamin.audurier@cern.ch
Open and hidden charm production in pPb collisions

- χ_{c1} and χ_{c2} peaks observed in pPb/Pbp collisions with converted and non-converted photons.

Analysis ongoing, stay tuned!
Preliminary measurements of Z cross-section in pPb/Pbp collisions at $\sqrt{s_{NN}} = 8$ TeV

- Factor 20 increase in statistics compared to previous LHCb measurements.
- Data are precise enough to strongly constrain predictions.
Fixed-target results
Fixed-target results

Antiproton in pHe at $\sqrt{s_{NN}} = 110$ GeV

- Antiproton cross-sections in pHe: key to constrain dark matter search in cosmic flux.
 - Data constrain extrapolations from pp to pHe cross-sections.
 - Data constrain empirical parameterization for scaling violation of cross-sections.

Benjamin Audurier - benjamin.audurier@cern.ch
Fixed-target results

Antiproton in pHe at $\sqrt{s_{\text{NN}}} = 110$ GeV

- Antiproton cross-sections in pHe: key to constrain dark matter search in cosmic flux.
 - Data constrain extrapolations from pp to pHe cross-sections.
 - Data constrain empirical parameterization for scaling violation of cross-sections.

Benjamin Audurier - benjamin.audurier@cern.ch

Charm in pHe at $\sqrt{s_{\text{NN}}} = 86.6$ GeV

- Open-charm production in fixed-target LHCb acceptance: access to anti-shadowing and intrinsic charm content in the nucleons.
 - Precise J/ψ and D^0 measurements in pHe.
 - Good agreement between data and theory with no strong intrinsic charm contribution observed.

Felipe Garcia - poster
Sneak peek at UPC PbPb collisions

- Coherent charmonium production analysis ongoing in ultra-peripheral PbPb collisions at $\sqrt{s_{NN}} = 5$ TeV.
- Factor 20 increase in statistics compared to previous UPC results.

Analysis ongoing, stay tuned!
Sneak peek at hadronic PbPb-PbNe collisions

Samuel Belin - poster

- New PbPb dataset at $\sqrt{s_{NN}} = 5$ TeV:
 - up to 60% centrality reached in hadronic collisions!

- New PbNe dataset at $\sqrt{s_{NN}} = 68.6$ GeV:
 - No limitation in centrality!

Analysis ongoing, stay tuned!

Benjamin Audurier - benjamin.audurier@cern.ch
LHCb in the future
LHCb detector: season 3 (2021)

ียว Upgrade based on pp collision requirements:
- Collision rate at 40 MHz.
- Pile-up factor $\mu \approx 5$

 Girlfriend Replace the entire tracking system.
 Girlfriend Full software trigger.
- Remove L0 triggers.
- Read out the full detector at 40 MHz.

New Tracking system:
- Silicon upstream detector (UT)
- Scintillating tracking fibre (SciFi)

New electronics for muon and calorimeter systems

New pixel VELO

New RICH optics and photodetectors

Benjamin Audurier - benjamin.audurier@cern.ch
LHCb fixed-target program evolution

- **SMOG 2 (TDR)**: Standalone gas storage cell covering \(z \in [-500; -300] \) mm:
 - **Up to x100 higher gas density** with same gas flow of current SMOG.
 - Gas feed system measures the **gas density with few % accuracy**.

- Installation due in December 2019, to be operational from the start of LHC Run 3.
Run 3 and Run 4 prospects for heavy-ion physics with LHCb

Pasquale Di Nezza - Tue. at 5:20 pm
Run 3 and Run 4 prospects for heavy-ion physics with LHCb

PbPb collisions at LHCb
Run 3 and Run 4 prospects for heavy-ion physics with LHCb

Pasquale Di Nezza - Tue. at 5:20 pm

PbPb collisions at LHCb

❖ No significant saturation of the new LHCb detectors up to 30%!

❖ Two proposals for a new tracker:
- in 2024 → reach event more central collisions!
- In 2030 → no more limitations!
Run 3 and Run 4 prospects for heavy-ion physics with LHCb

Pasquale Di Nezza - Tue. at 5:20 pm

PbPb collisions at LHCb

- No significant saturation of the new LHCb detectors up to 30%!
- Two proposals for a new tracker:
 - in 2024 → reach event more central collisions!
 - In 2030 → no more limitations!

Fixed-target program

Run 3 and Run 4 prospects for heavy-ion physics with LHCb
Pasquale Di Nezza - Tue. at 5:20 pm

PbPb collisions at LHCb

- No significant saturation of the new LHCb detectors up to 30%!
- Two proposals for a new tracker:
 - in 2024 → reach event more central collisions!
 - In 2030 → no more limitations!

Fixed-target program

- Rapidity scan at 72 GeV with FT@LHCb can complement the RHIC beam energy scan.
Conclusions
Conclusions

- **LHCb results contribute to enlarged nuclear physics program**
 - Many precise results from large pPb/Pbp datasets at $\sqrt{s_{NN}} = 8$ TeV.
 - Unique results with the fixed-target program at LHC.
Conclusions

❖ LHCb results contribute to enlarged nuclear physics program
 - Many precise results from large pPb/Pbp datasets at $\sqrt{s_{NN}} = 8$ TeV.
 - Unique results with the fixed-target program at LHC.

❖ LHCb physics program is expanding
 - Two new datasets to explore: PbPb at $\sqrt{s_{NN}} = 5$ TeV and PbNe at $\sqrt{s_{NN}} = 86$ GeV.
 - A full UPC physics program to look at with high precision.
Conclusions

❖ **LHCb results contribute to enlarged nuclear physics program**
 - Many precise results from large pPb/Pbp datasets at $\sqrt{s_{NN}} = 8$ TeV.
 - Unique results with the fixed-target program at LHC.

❖ **LHCb physics program is expanding**
 - **Two new datasets to explore**: PbPb at $\sqrt{s_{NN}} = 5$ TeV and PbNe at $\sqrt{s_{NN}} = 86$ GeV.
 - A full UPC physics program to look at with high precision.

❖ **LHCb’s future is bright**
 - New detector with new tracking/PID system driven by pp physics.
 - Improved fixed-target program with SMOG 2.
 - Better performances expected for Run 3 in high-multiplicity collisions.
 - Extended capabilities of the detector = expansion of the physics program!