Search for the QCD phase transition

Volker Koch
Student Lecture
Quark Matter 2019

"A theory is something nobody believes, except the person who made it. An experiment is something everybody believes, except the person who made it."
A. Einstein

Outline

- Phase Transitions
- Cumulants: What are they and why are they useful
- Some preliminary experimental results and what they could mean
- Some tricky experimental issues
- Comparing data with Theory
- Cumulants and correlations
- Spinodal instability
- Summary

An old question

Fermi 1953

Matter in unusual conditions

discussed for many years

gets more colorful ...

What we know about the Phase Diagram

What we "hope" for

NB : critical point of water is at $\mathrm{T}=647 \mathrm{~K}$ and $\mathrm{p}=22.06 \mathrm{MPa}$

Is there a critical point?

Google finds everything...

Phase Transitions

Examples:
Water - vapor (liquid - gas)
Water - ice
Ferromagnet

Order parameter: Tells in which phase the system is Examples?

Control parameter: Moves system from one phase to another Examples?

Phase co-existence: Two or more phases can exist together Examples?

Phase Co-Existence

Water-vapor co-existence a.k.a your water kettle

Ferro-magnet
Weiss domains

Phase diagrams

Free Energy

Free Energy:
$\Omega=\Omega(T, \mu ; \Phi)$
Φ : Order parameter

What we are used to: One minimum

Free Energy

Free Energy:

Free Energy

Free Energy:

μ

Free Energy

Free Energy:
$\Omega=\Omega(T, \mu ; \Phi)$
Φ : Order parameter

In "dilute" phase
(close to transition)

Free Energy

Free Energy:

$\Omega=\Omega(T, \mu ; \Phi)$
Φ : Order parameter

At the critical point

Free Energy

Free Energy:
$\Omega=\Omega(T, \mu ; \Phi)$
Φ : Order parameter

Free Energy

Looking for signs of a transition

Cumulants and phase structure

What we always see....

What it really means....
" T_{c} " $\sim 160 \mathrm{MeV}$

Derivatives

$5^{\text {th }}$ order

T_{c}

How to measure derivatives

At $\mu=0$:

$$
\begin{gather*}
Z=\operatorname{tr} e^{-\hat{E} / T+\mu / T \hat{N}_{B}} \\
\langle E\rangle=\frac{1}{Z} \operatorname{tr} \hat{E} e^{-\hat{E} / T+\mu / T \hat{N}_{B}}=-\frac{\partial}{\partial 1 / T} \ln (Z) \\
\left\langle(\delta E)^{2}\right\rangle=\left\langle E^{2}\right\rangle-\langle E\rangle^{2}=\left(-\frac{\partial}{\partial 1 / T}\right)^{2} \ln (Z)=\left(-\frac{\partial}{\partial 1 / T}\right)\langle E\rangle \\
\left\langle(\delta E)^{n}\right\rangle=\left(-\frac{\partial}{\partial 1 / T}\right)^{n-1}\langle E\rangle
\end{gather*}
$$

Cumulants of Energy measure the temperature derivatives of the EOS
Cumulants of Baryon number measure the chem. pot. derivatives of the EOS

Cumulants of (Baryon) Number

$K_{n}=\frac{\partial^{n}}{\partial(\mu / T)^{n}} \ln Z=\frac{\partial^{n-1}}{\partial(\mu / T)^{n-1}}\langle N\rangle$
$K_{1}=\langle N\rangle, \quad K_{2}=\langle N-\langle N\rangle\rangle^{2}, K_{3}=\langle N-\langle N\rangle\rangle^{3}$

Cumulants scale with volume (extensive): $\quad K_{n} \sim V$

Volume not well controlled in heavy ion collisions

Cumulant Ratios: $\quad \frac{K_{2}}{\langle N\rangle}, \frac{K_{3}}{K_{2}}, \frac{K_{4}}{K_{2}}$

Measuring cumulants (derivatives)

$$
\begin{aligned}
& K_{2}=\langle N-\langle N\rangle\rangle^{2}=\sum_{N} P(N)(N-\langle N\rangle)^{2} \\
& K_{3}=\langle N-\langle N\rangle\rangle^{3}=\sum_{N} P(N)(N-\langle N\rangle)^{3} \\
& P(N)=\frac{N_{\text {events }}(N)}{N_{\text {events }}(\text { total })}
\end{aligned}
$$

Simple model

Change degrees of freedom at phase transition

$$
\langle N\rangle=\operatorname{dof}(\mu) e^{\mu / T} \int d^{3} p e^{-E / T}
$$

Close to $\mu=0$

$$
F=F(r), \quad r=\sqrt{T^{2}+a \mu^{2}}
$$

a ~ curvature of critical line

Needs higher order cumulants (derivatives) at $\mu \sim 0$

Lattice at $\mu=0$

Equation of state

Second order Cumulant

$$
\left.\frac{\partial^{2}}{\partial \mu^{2}} F(T, \mu)\right|_{\mu=0}=\frac{a}{T} \frac{\partial}{\partial T} F(T, \mu=0) \sim\langle E\rangle
$$

Cumulants: a closer look

$$
Z=\operatorname{tr} e^{-\hat{E} / T+\mu / T \hat{N}_{B}}
$$

$K_{n}=\frac{\partial^{n}}{\partial(\mu / T)^{n}} \ln Z=\frac{\partial^{n-1}}{\partial(\mu / T)^{n-1}}\langle N\rangle$
Cumulants are extensive: $K_{n} \sim V$
$K_{2}=\langle N-\langle N\rangle\rangle^{2}=\int d^{3} x d^{3} y\langle\delta \rho(x) \delta \rho(y)\rangle ; \quad \delta \rho(x)=\rho(x)-\bar{\rho}$
Susceptibility:
$\chi_{(2) i, j}=\frac{1}{V T^{3}} \int d^{3} x d^{3} y\left\langle\delta \rho_{i}(x) \delta \rho_{j}(y)\right\rangle=\frac{1}{T^{3}} \bar{\rho}_{i} \delta_{i, j}+\frac{1}{T^{3}} \int d^{3} r C_{i, j}(r)$
Correlation function (in configuration space!):
$C_{i, j}(\vec{r})=\left\langle\delta \rho_{i}(\vec{r}) \delta \rho_{j}(0)\right\rangle-\bar{\rho}_{i} \delta_{i, j} \delta(\vec{r}) \sim \frac{\exp \left[-r / \xi_{i, j}\right]}{r}$
Correlation length (in configuration space!): $\xi_{i, j}$
Relation to cumulant: $\quad K_{2}=V T^{3} \chi_{(2) i, i}$

Correlation length

$$
\begin{aligned}
& C(r) \sim \frac{\exp [-r / \xi]}{r} \quad \begin{array}{c}
\text { Static correlation function; } \\
\text { "Yukawa" potential with mass: } \quad m \sim \frac{1}{\xi} \\
\chi \sim \int C(r) d^{3} r \sim \xi^{2} \sim \frac{1}{m^{2}} \\
\text { simple "sigma" exchange }
\end{array} \\
& \text { Critical point (second order) } \\
& m_{\sigma} \rightarrow 0, \xi \rightarrow \infty
\end{aligned}
$$

Critical point

- Second order phase transition
- Fluctuations at all length scales
- Critical opalescence

$T \gg T_{c}$
$T \approx T_{c}$
$\mathbf{T}=\mathrm{T}_{\mathrm{c}}$

Higher moments (cumulants) and ξ

- Consider probability distribution for the order-parameter field:

$$
\begin{gathered}
P[\sigma] \sim \exp \{-\Omega[\sigma] / T\}, \\
\Omega=\int d^{3} x\left[\frac{1}{2}(\nabla \sigma)^{2}+\frac{m_{\sigma}^{2}}{2} \sigma^{2}+\frac{\lambda_{3}}{3} \sigma^{3}+\frac{\lambda_{4}}{4} \sigma^{4}+\ldots\right] . \Rightarrow \xi=m_{\sigma}^{-1}
\end{gathered}
$$

- Moments (connected) of $\boldsymbol{q}=0$ mode $\sigma_{V} \equiv \int d^{3} x \sigma(x)$:

First approximation:

$$
\begin{aligned}
& \kappa_{2}=\left\langle\sigma_{V}^{2}\right\rangle=V T \xi^{2} ; \quad \kappa_{3}=\left\langle\sigma_{V}^{3}\right\rangle=2 V T^{2} \lambda_{3} \xi^{6} ; \\
& \kappa_{4}=\left\langle\sigma_{V}^{4}\right\rangle_{c} \equiv\left\langle\sigma_{V}^{4}\right\rangle-3\left\langle\sigma_{V}^{2}\right\rangle^{2}=6 V T^{3}\left[2\left(\lambda_{3} \xi\right)^{2}-\lambda_{4}\right] \xi^{8} .
\end{aligned}
$$

- Tree graphs. Each propagator gives ξ^{2}.

- Scaling requires "running": $\lambda_{3}=\tilde{\lambda}_{3} T(T \xi)^{-3 / 2}$ and $\lambda_{4}=\tilde{\lambda}_{4}(T \xi)^{-1}$, i.e.,

$$
\kappa_{3}=\left\langle\sigma_{V}^{3}\right\rangle=2 V T^{3 / 2} \tilde{\lambda}_{3} \xi^{4.5} ; \quad \kappa_{4}=6 V T^{2}\left[2\left(\tilde{\lambda}_{3}\right)^{2}-\tilde{\lambda}_{4}\right] \xi^{7} .
$$

Finite size scaling

Second order (critical point)

$\xi \sim V^{2 / 3}, \quad \chi \sim V^{4 / 3}$

Cross over

$\xi=$ const,$\quad \chi=$ const
(mean field)
NB: 1st order: $\chi \sim V$

QCD at $\mu=0$ is cross-over

Aoki et al, Nature 43:675-678,2006

The phase diagram

Increase chemical potential by lowering the beam energy
In reality, we add baryons (nucleons) from target and projectile to mid-rapidity

What to expect from experiment?

Beam Energy

Expectation from Calculations

Characteristic "Oscillating pattern" is expected for the QCD critical point but the exact shape depends on the location of freeze-out with respect to the location of CP

- M. Stephanov, PRL107, 052301(2011)
- V. Skokov, Quark Matter 2012
- J.W. Chen, J. Deng, H. Kohyyama, arXiv: 1603.05198, Phys. Rev. D93 (2016) 034037
N. Xu, CPOD 2016

Latest STAR result on net-proton cumulants
 X. Luo, NPA 956 (2016) 75

$\mathrm{K}_{4} / \mathrm{K}_{2}$ follows expectation, $\mathrm{K}_{3} / \mathrm{K}_{2}$ no so much..... URQMD totally fails to get trend for $\mathrm{K}_{4} / \mathrm{K}_{2}$!

The measurement process

Or in the real world.....

Modeling the detector (multiplicities only)

Detector maps TRUE number of particles

$$
B(n, N, \epsilon, \ldots)
$$ onto OBSERVED number of particles

$p(n)=\sum_{N} B(n, N, \epsilon, \ldots) P(N)$
Observed True
B is matrix which controls the mapping

$$
p_{n}=B_{n, N} P_{N}
$$

Unfolding

$$
\begin{array}{r}
p(n)=\sum_{N} B(n, N, \epsilon, \ldots) P(N) \\
\text { Observed True }
\end{array}
$$

To get TRUE $P(N)$ we need to invert matrix B so that

$$
P(N)=\sum_{n} B^{-1}(N, n, \epsilon, \ldots) p(n)
$$

This is called UNFOLDING

In practice simple inverting does not work!

Or in the real world...

Example: Binomial

$$
\begin{array}{ccc}
\mathbf{p}_{\mathrm{n}} & \mathrm{~B}_{\mathrm{n}, \mathrm{~N}} & \mathrm{P}_{\mathbf{N}} \\
\left(\begin{array}{l}
p(0) \\
p(1) \\
p(2) \\
p(3) \\
p(4)
\end{array}\right)=\left(\begin{array}{ccccc}
1 & 1-\epsilon & (1-\epsilon)^{2} & (1-\epsilon)^{3} & (1-\epsilon)^{4} \\
0 & \epsilon & 2 \epsilon(1-\epsilon) & 3 \epsilon(1-\epsilon)^{2} & 4 \epsilon(1-\epsilon)^{3} \\
0 & 0 & \epsilon^{2} & 3 \epsilon^{2}(1-\epsilon) & 6 \epsilon^{2}(1-\epsilon)^{2} \\
0 & 0 & 0 & \epsilon^{3} & 4 \epsilon^{3}(1-\epsilon) \\
0 & 0 & 0 & 0 & \epsilon^{4}
\end{array}\right)\left(\begin{array}{c}
P(0) \\
P(1) \\
P(2) \\
P(3) \\
P(4)
\end{array}\right)
\end{array}
$$

Binomial probability $\varepsilon<1$ is often called "efficiency"

Theoretically: $\quad n_{\text {Obs. }} \leq N_{\text {True }} \Rightarrow \mathrm{B}$ is triangular

$$
\mathrm{B}_{\mathrm{n}, \mathrm{~N}} \text { almost singular! STAR: } 0.6<\varepsilon<0.8
$$

In Practice: Who knows... is the detector even "binomial"

Binomial allows to invert (at least for cumulants)

Is $B(n, N)$ binomial ?

Efficiency depends on multiplicity!

Binomial distributions and real detectors

The most obvious correction:
Multiplicity dependence of efficiency

$$
\epsilon(N)=\epsilon_{0}+\epsilon^{\prime}(N-\langle N\rangle)
$$

More details:
A. Bzdak, R. Holzmann et al.
arXiv:1603.09057

Other models for $\mathrm{B}(\mathrm{n}, \mathrm{N})$

Hypergeometric

Hypergeometric	$\alpha=0.6$	$\alpha=1.0$	$\alpha=2.0$	$\alpha=5.0$
K_{3} / K_{2}	1.16	1.12	1.07	1.03
K_{4} / K_{2}	0.66	0.88	0.98	1.00
K_{5} / K_{2}	2.19	1.68	1.23	1.05
K_{6} / K_{2}	-3.99	-1.38	0.31	0.89

Beta Binomial

Beta-binomial	$\alpha=30$	$\alpha=60$	$\alpha=150$	$\alpha=1000$
K_{3} / K_{2}	1.28	1.24	1.13	1.02
K_{4} / K_{2}	0.82	1.45	1.35	1.07
K_{5} / K_{2}	-1.11	1.15	1.63	1.16
K_{6} / K_{2}	5.71	-0.44	1.80	1.32

Insights from Theory

Compare Data with Lattice QCD and other field theoretical models

Compare Data with Lattice QCD and other field theoretical models

- Lattice cannot calculate hadron abundances
- Cumulants are well defined quantities
- Compare cumulants !?
- Baryon number conservation
- Experiment measures protons not all baryons
- Volume is not fixed in experiment
- Experiment has finite momentum space coverage (usually)

Compare Data with Lattice QCD

For example: Wuppertal-Budapest (arXiv:1305.5161) (similar from Hot QCD)

Baryon number conservation

Lattice works in grand-canonical ensemble:
Baryon number conserved only on average
Experiment: Baryon number is conserved event-by-event

No physics other than baryon number conservation

$$
\begin{aligned}
R_{4,2} & =\frac{K_{4}}{K_{2}} \\
R_{6,2} & =\frac{K_{6}}{K_{2}}
\end{aligned}
$$

Fraction of total baryons in detector

Protons vs Baryons

Fast isospin exchange a.k.a lots of pions:
protons and neutrons follow binomial distribution
$P\left(N_{p}\right)=\frac{B!}{N_{p}!\left(B-N_{p}\right)!} p^{N_{p}}(1-p)^{B-N_{p}}$
with $p \sim 0.5$
(Kitazawa, Asakawa arXiv:1107.2755)

Finite acceptance

Example: "Charge" susceptibility
$\chi_{Q}=\int d^{3} x<\rho(x) \rho(0)>=\int d^{3} p<\tilde{\rho}(p) \tilde{\rho}(0)>$

Equivalence of Integrated coordinate space and momentum space correlation function

Experiment almost never integrates ALL of momentum space!
Lattice (hopefully) does integrate over all coordinate space

Correlations: Lattice vs Data

$$
\left\langle n\left(y_{1}\right)\left(n\left(y_{2}\right)-\delta\left(y_{1}-y_{2}\right)\right)\right\rangle=\left\langle n\left(y_{1}\right)\right\rangle\left\langle n\left(y_{2}\right)\right\rangle\left(1+C\left(y_{1}, y_{2}\right)\right)
$$

Alice Charge Flucts

$$
C\left(y_{1,} y_{2}\right) \sim \exp \left(\frac{-\left(y_{1}-y_{2}\right)^{2}}{2 \sigma^{2}}\right)
$$

$$
\frac{\left\langle(\delta N)^{2}\right\rangle}{\langle N\rangle}=1+\langle N\rangle \int_{\Delta / 2}^{\Delta / 2} C(y 1, y 2) d y 1 d y_{2}
$$

"Lattice result"

Dependence on Rapidity window

X. Luo, EMMI Workshop, Nov. 2015

- Kurtosis depends strongly on Rapidity window
- Comparison with Lattice:
- Lattice catches the full correlation length
- need to expand rapidity window until signal saturates (after correcting for charge conservation)

Any comparison of Lattice to Data needs to assure that cumulants reach asymptotic value in experiment.

So far this has NOT ben established for proton cumulants

Back to data assuming that STAR has done their job

X. Luo, NPA 956 (2016) 75

$\mathrm{K}_{4} / \mathrm{K}_{2}$ follows expectation, $\mathrm{K}_{3} / \mathrm{K}_{2}$ no so much..... URQMD totally fails to get trend for $\mathrm{K}_{4} / \mathrm{K}_{2}$!

Further insights: Correlations

Cumulants
 $$
K_{n}=\frac{\partial^{n}}{\partial(\mu / T)^{n}} \ln Z
$$

$$
K_{2}=\langle N-\langle N\rangle\rangle^{2}=\left\langle(\delta N)^{2}\right\rangle
$$

$$
\rho_{2}\left(p_{1}, p_{2}\right)=\rho_{1}\left(p_{1}\right) \rho_{1}\left(p_{2}\right)+C_{2}\left(p_{1}, p_{2}\right)
$$

C_{2} : Correlation Function

$$
\begin{aligned}
& K_{3}=\left\langle(\delta N)^{3}\right\rangle \\
& \begin{aligned}
\rho_{3}\left(p_{1}, p_{2}, p_{3}\right)= & \left.\left.\rho_{1}\left(p_{1}\right) \rho_{1}\left(p_{2}\right) \rho_{1}\left(p_{3}\right)+\rho_{1}\left(p_{1}\right) \underline{C_{2}\left(p_{2}, p_{3}\right.}\right)+\rho_{1}\left(p_{2}\right) \underline{C_{2}\left(p_{1}, p_{3}\right.}\right) \\
& +\rho_{1}\left(p_{3}\right) \underline{C_{2}\left(p_{1}, p_{2}\right)}+\underline{C_{3}\left(p_{1}, p_{2}, p_{3}\right)}
\end{aligned}
\end{aligned}
$$

More details: Bzdak et al, arXiv:1607.07375, Lin et al arXiv:1512.09125

From Cumulants to Correlations (no anti-protons)

Defining integrated correlations function
$C_{n}=\int d p_{1} \ldots d p_{n} C_{n}\left(p_{1}, \ldots, p_{n}\right)$
Simple Algebra leads to relation between correlations C_{n} and K_{n}
$C_{2}=-K_{1}+K_{2}$,
$C_{3}=2 K_{1}-3 K_{2}+K_{3}$,
$C_{4}=-6 K_{1}+11 K_{2}-6 K_{3}+K_{4},$.
or vice versa
$K_{2}=\langle N\rangle+C_{2}$
$K_{3}=\langle N\rangle+3 C_{2}+C_{3}$
$K_{4}=\langle N\rangle+7 C_{2}+6 C_{3}+C_{4}$

Preliminary Star Data (X. Luo, PoS Cpod 2014 (019))

Significant four particle correlations!

Four particle correlation dominate K_{4} for central collisions at 7.7 GeV

$$
\begin{aligned}
K_{2} & =\langle N\rangle+C_{2} \\
K_{3} & =\langle N\rangle+3 C_{2}+C_{3} \\
K_{4} & =\langle N\rangle+7 C_{2}+6 C_{3}+C_{4}
\end{aligned}
$$

Correlations

Energy dependence

Note: anti-protons are non- negligible above 19.6 GeV

Rapidity dependence

$C_{k}(\Delta Y)=\int_{\Delta Y} d y_{1} \ldots d y_{k} \rho_{1}\left(y_{1}\right) \ldots \rho_{1}\left(y_{k}\right) c_{k}\left(y_{1}, \ldots, y_{k}\right)$
Assume: $\quad \rho_{1}(y) \simeq$ const.
short range correlations:

$$
\begin{aligned}
& c_{k}\left(y_{1}, \ldots, y_{k}\right) \sim \delta\left(y_{1}-y_{2}\right) \ldots \delta\left(y_{k-1}-y_{k}\right) \\
& C_{k}(\Delta Y) \sim \Delta Y \rightarrow K_{k} \sim \Delta Y
\end{aligned}
$$

Long range correlations:
$c_{k}\left(y_{1}, \ldots, y_{k}\right)=$ const .

$$
\begin{aligned}
& C_{k}(\Delta Y) \sim(\Delta Y)^{k} \sim\langle N\rangle^{k} \\
& \quad \Rightarrow K_{n}=K_{n}(\langle N\rangle)
\end{aligned}
$$

Long range correlations

$$
\begin{aligned}
& C_{k}=\langle N\rangle^{k} c_{k} \\
& c_{k}=\text { const. } \Rightarrow K_{n}=K_{n}(\langle N\rangle)
\end{aligned}
$$

Can we understand these correlations?

- Two particle correlations can be understood by simple

Glauber model + Baryon number conservation

Four particle correlations are orders of magnitudes larger in the data Also seen in URQMD calculations by He et al. PLB774 (2017) 623

Need to assume the $\sim 40 \%$ of protons come from 8 -nucleon cluster in order to get magnitude right!

URQMD

He, Luo PLB774 (2017) 623

Latest STAR result on net-proton cumulants
 X. Luo, NPA 956 (2016) 75

$\mathrm{K}_{4} / \mathrm{K}_{2}$ above baseline $\mathrm{K}_{3} / \mathrm{K}_{2}$ below baseline

Shape of probability distribution

$$
\begin{aligned}
& K_{3}<\langle N\rangle \quad K_{3}=\langle N-\langle N\rangle\rangle^{3} \\
& K_{4}>\langle N\rangle \\
& K_{4}=\langle N-\langle N\rangle\rangle^{4}-3\langle N-\langle N\rangle\rangle^{2}
\end{aligned}
$$

Simple two component model

Weight of small component: $\sim 0.3 \%$

Simple two component model

Difficult to see in the real data with efficiency $\varepsilon=0.65$

Two component model

$$
\begin{aligned}
& P(N)=(1-\alpha) P_{(a)}(N)+\alpha P_{(b)}(N) \\
& \bar{N}=\left\langle N_{(a)}\right\rangle-\left\langle N_{(b)}\right\rangle \\
& C_{2}=C_{2}^{(a)}-\alpha\left\{\bar{C}_{2}-(1-\alpha) \bar{N}^{2}\right\} \\
& C_{3}=C_{3}^{(a)}-\alpha\left\{\bar{C}_{3}+(1-\alpha)\left[(1-2 \alpha) \bar{N}^{3}-3 \bar{N} \bar{C}_{2}\right]\right\} \\
& C_{4}=C_{4}^{(a)}-\alpha\left\{\bar{C}_{4}-(1-\alpha)\left[\left(1-6 \alpha+6 \alpha^{2}\right) \bar{N}^{4}-6(1-2 \alpha) \bar{N}^{2} \bar{C}_{2}+4 \bar{N} \bar{C}_{3}+3\left(\bar{C}_{2}\right)^{2}\right]\right\} \\
& \bar{C}_{n}=C_{n}^{(a)}-C_{n}^{(b)}
\end{aligned}
$$

For Poisson, $\mathrm{C}_{(\mathrm{a})}, \mathrm{C}_{(\mathrm{b})}=0$

Fit to STAR data: $\quad\left\langle N_{(a)}\right\rangle \simeq 40,\left\langle N_{(b)}\right\rangle \simeq 25, \alpha \simeq 0.003$

Two component model

$P(N)=(1-\alpha) P_{(a)}(N)+\alpha P_{(b)}(N)$
$\bar{N}=\left\langle N_{(a)}\right\rangle-\left\langle N_{(b)}\right\rangle>0$
For $\mathrm{P}_{(\mathrm{a})}, \mathrm{P}_{(\mathrm{b})}$ Poisson, or (to good approximation) Binomial
$C_{n}=(-1)^{n} K_{n}^{B} \bar{N}^{n} \quad n \geq 2$
K_{n}^{B} : Cumulant of Bernoulli distribution
$\alpha \ll 1, K_{n}^{B}=\alpha \Rightarrow C_{n} \simeq \alpha(-1)^{n} \bar{N}^{n}$
$\Rightarrow\left|C_{n}\right| \sim\langle N\rangle^{n}$ as seen by STAR (i.e. "infinite" correlation length)
predict: $\quad \frac{C_{4}}{C_{3}}=\frac{C_{5}}{C_{4}}=\frac{C_{n+1}}{C_{n}}=-\bar{N} \quad \bar{N} \simeq 15$
Clear and falsifiable prediction: $\quad C_{5} \approx-2650 \quad C_{6} \approx 41000$

This model can be tested RIGHT NOW!

Model prediction:

$$
\begin{array}{ll}
C_{5}=-2645(1 \pm 0.14), & C_{6}=40900(1 \pm 0.18),
\end{array} \quad \text { Efficiency }
$$

$$
\begin{aligned}
& C_{5}=-307(1 \pm 0.31), \quad C_{6}=3085(1 \pm 0.41), \\
& C_{7}=-30155(1 \pm 0.61), \quad C_{8}=271492(1 \pm 1.06),
\end{aligned}
$$

Efficiency
UN-corrected

Based on 144393 events (same as STAR 0-5\% at 7.7 GEV)

Speculation

Bzdak et al, arXiv:1804.04463

Free Energy

Free Energy:
$\Omega=\Omega(T, \mu ; \Phi)$
Φ : Order parameter

Simple two component model

Analyse data for $\mathrm{N}_{\mathrm{p}}<20$

- Is flow etc different?
- "Inspect by eye ($<1 \%$ of all events)

Co-existence region

System should spent long time in spinodal region

Spinodal instability: Mechanical instability

$$
\frac{\partial P}{\partial \rho}<0
$$

Exponential growth of clumping
Non-equilibrium phenomenon!

Phase-transition dynamics: Density clumping

$\begin{aligned} & \text { Phase } \\ & \text { transition }\end{aligned}=>\left\{\begin{array}{l}\text { Phase coexistence: surface tension } \\ \text { Phase separation: instabilities }\end{array}\right.$
Insert the modified pressure into existing ideal finite-density fluid dynamics code

-

]Introduce a gradient term: $p(\boldsymbol{r})=p_{0}\left(\varepsilon(\boldsymbol{r}), \rho(\boldsymbol{r})-C \rho(\boldsymbol{r}) \nabla^{2} \rho(\boldsymbol{r})\right.$
Use UrQMD for pre-equilibrium stage to obtain fluctuating initial conditions

Simulate central $\mathrm{Pb}+\mathrm{Pb}$ collisions at $\approx 3 \mathrm{GeV} / \mathrm{A}$ beam kinetic energy on fixed target, using an Equation of State either with a phase transition or without (Maxwell partner):

With phase transition:

Without phase transition:

Density enhancement:

Evolution of density moments

$$
\left\langle\rho^{N}\right\rangle \equiv \frac{1}{A} \int \rho(\boldsymbol{r})^{N} \rho(\boldsymbol{r}) d^{3} \boldsymbol{r}
$$ PRL 109, 212301(2012) PRC 87, 054903 (2013)

Consider two Equations of State

Steinheimer et al,
Phys.Rev. C89 (2014) 034901

PQM ("liquid-gas")

"QCD"

Time evolution

Oscillation of nearly stable droplets for "liquid-gas" EoS

Higher pressure leads to faster evolution of "QCD" EoS.

Steinheimer et al,
Phys.Rev. C89 (2014) 034901

Cluster a.k.a. nuclei

Even if total baryon number does not fluctuate the baryon density does

Therefore measure production of NUCLEI: d, ${ }^{3} \mathrm{He},{ }^{4} \mathrm{He},{ }^{7} \mathrm{Li} . .$. .

$$
\langle d\rangle \sim\left\langle\rho^{2}\right\rangle \quad\left\langle{ }^{3} H e\right\rangle \sim\left\langle\rho^{3}\right\rangle \quad\left\langle{ }^{7} L i\right\rangle \sim\left\langle\rho^{7}\right\rangle
$$

Extracts higher moments of the baryon density at freeze out

Nice Idea, but...

"Cluster" formation

"QCD" EoS

$$
\left(\frac{S}{B}\right)_{\text {nadron- gas }}<\left(\frac{S}{B}\right)_{\varrho G P-\text { liquid }}
$$

Clumping in coordinate space is compensated by dilution in momentum space \rightarrow tiny effect

"Deep" learning fails as well....

Coordinate space

Momentum space

Steinheimer et al., arXiv: I 906.06562

Summary

- Cumulants measure derivatives of the free energy (equation of state)
- Sensitive to "wiggles" a.k.a. "remnants" of phase transition
- Experiments are difficult: detector needs to be understood well
- Careful when comparing theory with measured cumulants
- Correlations a.k.a. factorial cumulants provide complementary insights
- strong four particle correlation at low energies
- Don't forget the first order phase transition
- Spinodal instability
- Very active field, both in experiment and theory

VERY INTERESTING TIMES ADHEAD

