Search for the QCD phase transition

Volker Koch

Student Lecture Quark Matter 2019

"A theory is something nobody believes, except the person who made it. An experiment is something everybody believes, except the person who made it."

A. Einstein

Outline

- Phase Transitions
- Cumulants: What are they and why are they useful
- Some preliminary experimental results and what they could mean
 - Some tricky experimental issues
 - Comparing data with Theory
 - Cumulants and correlations
- Spinodal instability
- Summary

An old question

discussed for many years

gets more colorful ...

What we know about the Phase Diagram

What we "hope" for

NB: critical point of water is at T=647K and p=22.06 MPa

Is there a critical point?

Google finds everything...

Phase Transitions

Examples: Water - vapor (liquid - gas) Water - ice Ferromagnet

Order parameter: Tells in which phase the system is Examples ?

Control parameter: Moves system from one phase to another Examples ?

Phase co-existence: Two or more phases can exist together Examples ?

Phase Co-Existence

Water-vapor co-existence a.k.a your water kettle Ferro-magnet Weiss domains

Phase diagrams

Free Energy: $\Omega = \Omega(T, \mu; \Phi)$ Φ : Order parameter

What we are used to: One minimum

Looking for signs of a transition

Cumulants and phase structure

What we always see....

What it really means....

"T_c" ~ 160 MeV

Derivatives

How to measure derivatives

At
$$\mu = 0$$
:

$$Z = tr e^{-\hat{E}/T + \mu/T\hat{N}_B}$$

$$\langle E \rangle = \frac{1}{Z} tr \hat{E} e^{-\hat{E}/T + \mu/T\hat{N}_B} = -\frac{\partial}{\partial 1/T} \ln(Z)$$

$$\langle (\delta E)^2 \rangle = \langle E^2 \rangle - \langle E \rangle^2 = \left(-\frac{\partial}{\partial 1/T}\right)^2 \ln(Z) = \left(-\frac{\partial}{\partial 1/T}\right) \langle E \rangle$$

$$\langle (\delta E)^n \rangle = \left(-\frac{\partial}{\partial 1/T}\right)^{n-1} \langle E \rangle$$

Cumulants of Energy measure the temperature derivatives of the EOS Cumulants of Baryon number measure the chem. pot. derivatives of the EOS

Cumulants of (Baryon) Number

$$K_n = \frac{\partial^n}{\partial (\mu/T)^n} \ln Z = \frac{\partial^{n-1}}{\partial (\mu/T)^{n-1}} \langle N \rangle$$

$$K_1 = \langle N \rangle, \ K_2 = \langle N - \langle N \rangle \rangle^2, \ K_3 = \langle N - \langle N \rangle \rangle^3$$

Cumulants scale with volume (extensive): $K_n \sim V$

Volume not well controlled in heavy ion collisions

Cumulant Ratios:
$$\frac{K_2}{\langle N \rangle}, \frac{K_3}{K_2}, \frac{K_4}{K_2}$$

Measuring cumulants (derivatives)

$$K_{2} = \langle N - \langle N \rangle \rangle^{2} = \sum_{N} P(N)(N - \langle N \rangle)^{2}$$
$$K_{3} = \langle N - \langle N \rangle \rangle^{3} = \sum_{N} P(N)(N - \langle N \rangle)^{3}$$
$$Nevents(N)$$

$$P(N) = \frac{Nevents(N)}{N_{events}(total)}$$

Simple model

Change degrees of freedom at phase transition

$$\langle N \rangle = dof(\mu) e^{\mu/T} \int d^3 p e^{-E/T}$$

Close to µ=0

Lattice at µ=0

$$\frac{\partial^2}{\partial \mu^2} F(T,\mu)|_{\mu=0} = \frac{a}{T} \frac{\partial}{\partial T} F(T,\mu=0) \sim \langle E \rangle$$

32

Cumulants: a closer look

$$Z = tr \, e^{-\hat{E}/T + \mu/T\hat{N}_B}$$

 $K_n = \frac{\partial^n}{\partial (\mu/T)^n} \ln Z = \frac{\partial^{n-1}}{\partial (\mu/T)^{n-1}} \langle N \rangle \qquad \text{Cumulants are extensive: } K_n \sim V$ $K_2 = \langle N - \langle N \rangle \rangle^2 = \int d^3x d^3y \, \langle \delta \rho(x) \delta \rho(y) \rangle \,; \quad \delta \rho(x) = \rho(x) - \bar{\rho}$

Susceptibility:

$$\chi_{(2)\,i,j} = \frac{1}{VT^3} \int d^3x d^3y \,\langle \delta\rho_i(x)\delta\rho_j(y)\rangle = \frac{1}{T^3}\bar{\rho}_i\delta_{i,j} + \frac{1}{T^3} \int d^3r C_{i,j}(r)$$

Correlation function (in configuration space!): $C_{i,j}(\vec{r}) = \langle \delta \rho_i(\vec{r}) \, \delta \rho_j(0) \rangle - \bar{\rho_i} \delta_{i,j} \delta(\vec{r}) \sim \frac{\exp\left[-r/\xi_{i,j}\right]}{r}$

Correlation length (in configuration space!): $\xi_{i,j}$

Relation to cumulant: $K_2 = VT^3 \chi_{(2) i,i}$

Correlation length

$$C(r) \sim \frac{\exp[-r/\xi]}{r}$$

Static correlation function; "Yukawa" potential with mass:

 $m \sim \frac{1}{\xi}$

simple "sigma" exchange

$$\chi \sim \int C(r) d^3 r \sim \xi^2 \sim \frac{1}{m^2}$$

Critical point (second order)

 $m_{\sigma} \to 0, \ \xi \to \infty$

Cross over

Critical point

- Second order phase transition
- Fluctuations at all length scales
 - Critical opalescence

Higher moments (cumulants) and ξ

Consider probability distribution for the order-parameter field:

 $P[\sigma] \sim \exp\left\{-\Omega[\sigma]/T\right\},$

$$\Omega = \int d^3x \left[\frac{1}{2} (\boldsymbol{\nabla}\sigma)^2 + \frac{m_\sigma^2}{2} \sigma^2 + \frac{\lambda_3}{3} \sigma^3 + \frac{\lambda_4}{4} \sigma^4 + \dots \right] . \qquad \Rightarrow \quad \xi = m_\sigma^{-1}$$

9 Moments (connected) of q = 0 mode $\sigma_V \equiv \int d^3x \, \sigma(x)$:

$$\kappa_2 = \langle \sigma_V^2 \rangle = VT \,\xi^2 \,; \qquad \kappa_3 = \langle \sigma_V^3 \rangle = 2VT^2 \,\lambda_3 \,\xi^6 \,; \kappa_4 = \langle \sigma_V^4 \rangle_c \equiv \langle \sigma_V^4 \rangle - 3 \langle \sigma_V^2 \rangle^2 = 6VT^3 \left[2(\lambda_3 \xi)^2 - \lambda_4 \right] \xi^8$$

First approximation: count σ propagators

• Tree graphs. Each propagator gives ξ^2 .

Non-gaussian fluctuations at the QCD critical point - p. 7/14

Stephanov

Finite size scaling

Second order (critical point)

Cross over

 $\xi \sim V^{2/3}, \ \chi \sim V^{4/3} \qquad \qquad \xi = {\rm const}, \ \chi = {\rm const}$ (mean field) NB: 1st order: $\chi \sim V$

QCD at µ=0 is cross-over

The phase diagram

Baryon Chemical Potential - $\mu_B(MeV)$

Increase chemical potential by lowering the beam energy

In reality, we add baryons (nucleons) from target and projectile to mid-rapidity

What to expect from experiment?

Expectation from Calculations

The measurement process

Or in the real world.....

Modeling the detector (multiplicities only)

Unfolding

$$p(n) = \sum_N B(n,N,\epsilon,\ldots) P(N)$$

 Observed
 True

To get TRUE P(N) we need to invert matrix B so that

$$P(N) = \sum_n B^{-1}(N, n, \epsilon, \ldots) p(n)$$
 [True] Observed

This is called UNFOLDING

In practice simple inverting does not work!

Or in the real world...

Example: Binomial

Binomial probability ϵ <1 is often called "efficiency"

Theoretically: $n_{Obs.} \leq N_{True} \Rightarrow$ B is triangular

 $B_{n,N}$ almost singular ! STAR: 0.6< ϵ <0.8

In Practice: Who knows... is the detector even "binomial"

Binomial allows to invert (at least for cumulants)

Is B(n,N) binomial ?

Efficiency depends on multiplicity!

Binomial distributions and real detectors

The most obvious correction: Multiplicity dependence of efficiency

$$\epsilon(N) = \epsilon_0 + \epsilon'(N - \langle N \rangle)$$

More details: A. Bzdak, R. Holzmann et al. arXiv:1603.09057

Other models for B(n,N)

Hypergeometric

Hypergeometric	$\alpha = 0.6$	$\alpha = 1.0$	$\alpha = 2.0$	$\alpha = 5.0$
K_3/K_2	1.16	1.12	1.07	1.03
K_4/K_2	0.66	0.88	0.98	1.00
K_5/K_2	2.19	1.68	1.23	1.05
K_6/K_2	-3.99	-1.38	0.31	0.89
- /				

Beta Binomial

Beta-binomial	$\alpha = 30$	$\alpha = 60$	$\alpha = 150$	$\alpha = 1000$
K_3/K_2	1.28	1.24	1.13	1.02
K_4/K_2	0.82	1.45	1.35	1.07
K_5/K_2	-1.11	1.15	1.63	1.16
K_{6}/K_{2}	5.71	-0.44	1.80	1.32

Insights from Theory

Compare Data with Lattice QCD and other field theoretical models

Compare Data with Lattice QCD and other field theoretical models

- Lattice cannot calculate hadron abundances
- Cumulants are well defined quantities
- Compare cumulants !?
 - Baryon number conservation
 - Experiment measures protons not all baryons
 - Volume is not fixed in experiment
 - Experiment has finite momentum space coverage (usually)

Baryon number conservation

Lattice works in grand-canonical ensemble: Baryon number conserved only on average

Experiment: Baryon number is conserved event-by-event

No physics other than baryon number conservation

Protons vs Baryons

(Kitazawa, Asakawa arXiv:1107.2755)

Finite acceptance

Example: "Charge" susceptibility

$$\chi_Q = \int d^3x < \rho(x)\rho(0) > = \int d^3p < \tilde{\rho}(p)\tilde{\rho}(0) >$$

Equivalence of *Integrated* coordinate space and momentum space correlation function

Experiment almost never integrates ALL of momentum space!

Lattice (hopefully) does integrate over all coordinate space

Correlations: Lattice vs Data

Dependence on Rapidity window

X. Luo, EMMI Workshop, Nov. 2015

- Kurtosis depends strongly on Rapidity window
- Comparison with Lattice:
 - Lattice catches the full correlation length
 - need to expand rapidity window until signal saturates (after correcting for charge conservation)

Any comparison of Lattice to Data needs to assure that cumulants reach asymptotic value in experiment.

So far this has NOT ben established for proton cumulants

Back to data assuming that STAR has done their job

URQMD totally fails to get trend for K₄/K₂!

Further insights: Correlations

Cumulants
$$K_n = \frac{\partial^n}{\partial (\mu/T)^n} \ln Z$$

 $K_{2} = \langle N - \langle N \rangle \rangle^{2} = \langle (\delta N)^{2} \rangle$ $\rho_{2}(p_{1}, p_{2}) = \rho_{1}(p_{1})\rho_{1}(p_{2}) + C_{2}(p_{1}, p_{2}), \quad C_{2}: \text{Correlation Function}$

 $K_3 = \left\langle (\delta N)^3 \right\rangle$

 $\rho_3(p_1, p_2, p_3) = \rho_1(p_1)\rho_1(p_2)\rho_1(p_3) + \rho_1(p_1)C_2(p_2, p_3) + \rho_1(p_2)C_2(p_1, p_3) + \rho_1(p_3)C_2(p_1, p_2) + C_3(p_1, p_2, p_3)$

More details: Bzdak et al, arXiv:1607.07375, Lin et al arXiv:1512.09125

From Cumulants to Correlations (no anti-protons)

Defining integrated correlations function

$$C_n = \int dp_1 \dots dp_n C_n(p_1, \dots, p_n)$$

Simple Algebra leads to relation between correlations C_n and K_n

$$C_2 = -K_1 + K_2,$$

$$C_3 = 2K_1 - 3K_2 + K_3,$$

$$C_4 = -6K_1 + 11K_2 - 6K_3 + K_4,.$$

or vice versa

$$K_{2} = \langle N \rangle + C_{2}$$

$$K_{3} = \langle N \rangle + 3C_{2} + C_{3}$$

$$K_{4} = \langle N \rangle + 7C_{2} + 6C_{3} + C_{4}$$

Preliminary Star Data (X. Luo, PoS Cpod 2014 (019))

Significant four particle correlations!

Four particle correlation dominate K₄ for central collisions at 7.7 GeV

$$K_2 = \langle N \rangle + C_2$$

$$K_3 = \langle N \rangle + 3C_2 + C_3$$

$$K_4 = \langle N \rangle + 7C_2 + 6C_3 + C_4$$

Correlations

Energy dependence

Note: anti-protons are non- negligible above 19.6 GeV

Rapidity dependence

$$C_k(\Delta Y) = \int_{\Delta Y} dy_1 \dots dy_k \rho_1(y_1) \dots \rho_1(y_k) c_k(y_1, \dots, y_k)$$

Assume: $\rho_1(y) \simeq const.$

short range correlations:

$$c_k(y_1, \dots, y_k) \sim \delta(y_1 - y_2) \dots \delta(y_{k-1} - y_k)$$

 $C_k(\Delta Y) \sim \Delta Y \rightarrow K_k \sim \Delta Y$

Long range correlations:

$$c_{k}(y_{1},...,y_{k}) = const.$$

$$C_{k}(\Delta Y) \sim (\Delta Y)^{k} \sim \langle N \rangle^{k}$$

$$\Rightarrow K_{n} = K_{n} (\langle N \rangle)$$

Long range correlations

$$C_{k} = \langle N \rangle^{k} c_{k}$$

$$c_{k} = const. \Rightarrow K_{n} = K_{n} (\langle N \rangle)$$

Can we understand these correlations?

• Two particle correlations can be understood by simple Glauber model + Baryon number conservation

Four particle correlations are orders of magnitudes larger in the data Also seen in URQMD calculations by He et al. PLB774 (2017) 623

Need to assume the ~40% of protons come from 8-nucleon cluster in order to get magnitude right!

UKQIVID

He, Luo PLB774 (2017) 623

Latest STAR result on net-proton cumulants

K₄/K₂ above baseline K₃/K₂ below baseline

Shape of probability distribution

Simple two component model

Weight of small component: ~0.3%

Simple two component model

Difficult to see in the real data with efficiency ε =0.65

Two component model

$$P(N) = (1 - \alpha)P_{(a)}(N) + \alpha P_{(b)}(N)$$

$$\overline{N} = \langle N_{(a)} \rangle - \langle N_{(b)} \rangle$$

$$C_2 = C_2^{(a)} - \alpha \{ \overline{C}_2 - (1 - \alpha)\overline{N}^2 \}$$

$$C_3 = C_3^{(a)} - \alpha \{ \overline{C}_3 + (1 - \alpha) [(1 - 2\alpha)\overline{N}^3 - 3\overline{N}\overline{C}_2] \}$$

$$C_4 = C_4^{(a)} - \alpha \{ \overline{C}_4 - (1 - \alpha) [(1 - 6\alpha + 6\alpha^2)\overline{N}^4 - 6(1 - 2\alpha)\overline{N}^2\overline{C}_2 + 4\overline{N}\overline{C}_3 + 3(\overline{C}_2)^2] \}$$

$$\overline{C}_n = C_n^{(a)} - C_n^{(b)},$$

For Poisson, $C_{(a)}$, $C_{(b)}=0$

Fit to STAR data: $\langle N_{(a)} \rangle \simeq 40, \ \langle N_{(b)} \rangle \simeq 25, \ \alpha \simeq 0.003$

Two component model

$$P(N) = (1 - \alpha)P_{(a)}(N) + \alpha P_{(b)}(N)$$
$$\bar{N} = \left\langle N_{(a)} \right\rangle - \left\langle N_{(b)} \right\rangle > 0$$

For P_(a), P_(b) Poisson, or (to good approximation) Binomial $C_n = (-1)^n K_n^B \overline{N}^n$ $n \ge 2$ K_n^B : Cumulant of Bernoulli distribution $\alpha \ll 1, K_n^B = \alpha \implies C_n \simeq \alpha (-1)^n \overline{N}^n$ $\Rightarrow |C_n| \sim \langle N \rangle^n$ as seen by STAR (i.e. "infinite" correlation length)

$$\frac{C_4}{C_3} = \frac{C_5}{C_4} = \frac{C_{n+1}}{C_n} = -\bar{N} \qquad \bar{N} \simeq 15$$

Clear and falsifiable prediction:

$$C_5 \approx -2650$$
 $C_6 \approx 41000$

This model can be tested RIGHT NOW!

Model prediction:

 $C_5 = -2645 (1 \pm 0.14), \quad C_6 = 40900 (1 \pm 0.18),$ Efficiency $C_7 = -615135 (1 \pm 0.26), \quad C_8 = 8520220 (1 \pm 0.42)$ Correction

Efficiency corrected

 $C_5 = -307 (1 \pm 0.31), \quad C_6 = 3085 (1 \pm 0.41), \quad \text{Effic}$ $C_7 = -30155 (1 \pm 0.61), \quad C_8 = 271492 (1 \pm 1.06), \quad \text{UN-}$

Efficiency UN-corrected

Based on 144393 events (same as STAR 0-5% at 7.7 GEV)

Speculation

Free Energy

Simple two component model

- Is flow etc different?
- "Inspect by eye (<1% of all events)

Co-existence region

Spinodal instability: Mechanical instability

System should spent long time in spinodal region

Exponential growth of clumping

Non-equilibrium phenomenon!

Phase-transition dynamics: Density clumping

Insert the modified pressure into existing ideal finite-density fluid dynamics code

Introduce a <u>gradient</u> term: $p(\mathbf{r}) = p_0(\varepsilon(\mathbf{r}), \rho(\mathbf{r})) - C\rho(\mathbf{r}) \nabla^2 \rho(\mathbf{r})$

Use UrQMD for pre-equilibrium stage to obtain fluctuating initial conditions

Simulate central Pb+Pb collisions at ≈ 3 GeV/A beam kinetic energy on fixed target, using an Equation of State either <u>with</u> a phase transition or <u>without</u> (Maxwell partner):

Consider two Equations of State

Steinheimer et al, Phys.Rev. C89 (2014) 034901

PQM ("liquid-gas")

"QCD"

Time evolution

Oscillation of nearly stable droplets for "liquid-gas" EoS

Higher pressure leads to faster evolution of "QCD" EoS.

Steinheimer et al, Phys.Rev. C89 (2014) 034901

Cluster a.k.a. nuclei

$$\langle d \rangle \sim \langle \rho^2 \rangle \qquad \langle^3 He \rangle \sim \langle \rho^3 \rangle \qquad \langle^7 Li \rangle \sim \langle \rho^7 \rangle$$

Extracts higher moments of the baryon density at freeze out

Nice Idea, but...

"Cluster" formation

Clumping in coordinate space is compensated by dilution in momentum space \rightarrow tiny effect

Steinheimer et al, Phys.Rev. C89 (2014) 034901

"Deep" learning fails as well....

Steinheimer et al., arXiv:1906.06562

Summary

- Cumulants measure derivatives of the free energy (equation of state)
 - Sensitive to "wiggles" a.k.a. "remnants" of phase transition
- Experiments are difficult: detector needs to be understood well
- Careful when comparing theory with measured cumulants
- Correlations a.k.a. factorial cumulants provide complementary insights
 - strong four particle correlation at low energies
- Don't forget the first order phase transition
 - Spinodal instability
- Very active field, both in experiment and theory

VERY INTERESTING TIMES ADHEAD