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“A theory is something nobody believes, 
except the person who made it. 
An experiment is something everybody 
believes, except the person who made it.”

A. Einstein



Outline

• Phase Transitions 
• Cumulants: What are they and why are they useful 
• Some preliminary experimental results and what they could 

mean 
- Some tricky experimental issues 
- Comparing data with Theory 
- Cumulants and correlations 

• Spinodal instability 
• Summary
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An old question
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Fermi 1953



discussed for many years ....
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gets more colorful ...
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What we know about the Phase 
Diagram
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T

µ~920 MeV

Lattice QCD: 
Tc ~ 155 MeV 
pseudo-critical line up to O(µ2) 
pressure (EoS) up to O(µ6)

Theory, 
Measurements 

155MeV

Nuclear  
Liquid-Gas



What we “hope” for
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T

µ~920 MeV

Cross over transition155MeV

Nuclear  
Liquid-Gas

NB: critical point of water is at T=647K and p=22.06 MPa



Is there a critical point?

8



Google finds everything…
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Phase Transitions
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Examples: 
Water - vapor  (liquid - gas) 
Water - ice 
Ferromagnet 
….
Order parameter: Tells in which phase the system is 
                             Examples ? 

Control parameter: Moves system from one phase to another 
                               Examples ?

Phase co-existence: Two or more phases can exist together 
                                  Examples ?



Phase Co-Existence
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Water-vapor co-existence 
a.k.a your water kettle 

Ferro-magnet 
Weiss domains 



Phase diagrams
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ρ

T

RL

Unstable region

ρ

µ

Jump in density



Free Energy
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T

µ

Φ

Ω

� = �(T, µ; �)
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Free Energy:

�
<latexit sha1_base64="alQiFvkNZ2c9BWFDmAyOdMHrhZ8="></latexit>

: Order parameter

What we are used to: 
One minimum 



Free Energy
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: Order parameter

1st order  
phase co-existence 



Free Energy
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Free Energy:
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: Order parameter

In “dense” phase 
(close to transition)



Free Energy
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: Order parameter

In “dilute” phase 
(close to transition)



Free Energy
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Free Energy:
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: Order parameter

At the critical point



Free Energy
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Free Energy

19

T

µ

� = �(T, µ; �)
<latexit sha1_base64="CMIdOX7KGqY3smxEmSezcTf81h0="></latexit>

Free Energy:

�
<latexit sha1_base64="alQiFvkNZ2c9BWFDmAyOdMHrhZ8="></latexit>

: Order parameter

Φ

Ω
Φ

Ω
Φ

Ω
Φ

Ω
Φ

Ω



Looking for signs of a transition
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T

µ~920 MeV

Cross over transition
155MeV

Nuclear  
Liquid-Gas

µ

density

µc

µc µ

density



Cumulants and phase structure  
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What we always see.... What it really means....

“Tc” ~ 160 MeV



Derivatives
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Tc Tc

1st order 5th order

3th order0th order



How to measure derivatives
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At µ = 0:

Cumulants of Energy measure the temperature derivatives of the EOS

Z = tr e�Ê/T+µ/TN̂B

h(�E)2i = hE2i � hEi2 =

✓
� @

@1/T

◆2

ln(Z) =

✓
� @

@1/T

◆
hEi

h(�E)ni =
✓
� @

@1/T

◆n�1

hEi

hEi = 1

Z
tr Ê e�Ê/T+µ/TN̂B = � @

@1/T
ln(Z)

Cumulants of Baryon number measure the chem. pot. derivatives of the EOS



Cumulants of (Baryon) Number
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Kn =
�n

�(µ/T )n
ln Z =

�n�1

�(µ/T )n�1
�N�

Kn � VCumulants scale with volume (extensive):

Volume not well controlled in heavy ion collisions 

Cumulant Ratios: K2

�N� ,
K3

K2
,

K4

K2

K1 = �N� , K2 = �N � �N��2 , K3 = �N � �N��3



Measuring cumulants (derivatives) 
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Simple model
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�
d3pe�E/TChange degrees of freedom  

at phase transition
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Close to µ=0
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T

µ

a ~ curvature of critical line

Needs higher order cumulants (derivatives)  
at µ ~ 0

F = F (r), r =
p

T 2 + aµ2

�2

�µ2
F (T, µ)|µ=0 =

a

T

�

�T
F (T, µ = 0) � �E�
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Lattice at µ=0 
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Second order Cumulant
Equation of state

S. Borsanyi et al, JHEP 1011 (2010) 077 

�2

�µ2
F (T, µ)|µ=0 =

a
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�

�T
F (T, µ = 0) � �E�
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Cumulants: a closer look
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Z = tr e�Ê/T+µ/TN̂B

Kn =
�n

�(µ/T )n
ln Z =

�n�1

�(µ/T )n�1
�N�

K2 = �N � �N��2 =

�
d3xd3y ���(x)��(y)� ; ��(x) = �(x) � �̄
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Susceptibility:

4 8.1 Hadronic Fluctuations and Correlations

One can define and study higher order susceptibilities or cumulants, by differentiating multiple
times with respect to the appropriate chemical potentials

χ(ni,nj ,nk) ≡ 1
V T

∂ni

∂(µi/T )ni

∂nj

∂(µj/T )nj

∂nk

∂(µk/T )nk
log Z. (5)

Higher order cumulants up to the sixth [11, 14] and even eighth [12] order have been calculated
in Lattice QCD which, as we will discuss in section 8.1.3, provide useful information about the
properties of the matter above the critical temperature. In Fig. 2 we show the Taylor expansion
coefficients obtained in two flavor LQCD [14] which are proportional to the susceptibilities defined
in Eq. 5. The upper row in Fig. 2 shows the flavor-diagonal susceptibilities up to sixth-order,

cu,u
2 =

1
2T 2

χu,u

cu,u
4 =

1
24T 2

∂2

∂(µq/T )2
χu,u

cu,u
6 =

1
144T 2

∂4

∂(µq/T )4
χu,u. (6)

whereas the lower row shows the flavor off-diagonal susceptibility

cu,d
2 =

1
2T 2

χu,d (7)

and its derivative with the quark number chemical potential µq = µu + µd

cu,d
4 =

1
24T 2

∂2

∂(µq/T )2
χu,d

cu,d
6 =

1
144T 2

∂4

∂(µq/T )4
χu,d. (8)

We should point out that the results shown in Fig. 2 are based on simulation with rather
large quark masses. Recently, new results for three flavor QCD with almost physical light quark
masses have been reported [9, 15]. In this case, the second order susceptibilities are consistent
with the Stefan-Boltzmann limit of free, uncorrelated massless quarks right above the transition
temperature Tc, while the results shown here (upper left panel) exhibit a 20% suppression. The
phenomenological consequences of this and other physics interpretations of these susceptibilities
will be discussed in the following section.

As already mentioned, susceptibilities are related to intergrals of equal time correlation functions
of the appropriate charge-densities. Here we will restrict ourselves to the second order suscepti-
bilities keeping in mind that the higher order susceptibilities can also be expressed in terms of
appropriate (higher order) correlation functions.

Consider a density fluctuation δρi(x) = ρi(x)− ρ̄i at location x, where ρ̄i denotes the spatially
averaged density of the charge Qi. Then the susceptibilities are given by the following integral
over the density-density correlation functions:

χi,j =
1

V T

∫
d3xd3y ⟨δρi(x) δρj(y)⟩ =

1
T

ρ̄iδi,j +
1
T

∫
d3 rCi,j(r). (9)

The correlation functions

Ci,j(r⃗) = ⟨δρi(r⃗) δρj(0)⟩ − ρ̄iδi,jδ(r⃗) ∼
exp [−r/ξi,j ]

r
(10)

are characterized by typical correlation lengths ξi,j . The correlation length provides a measure for
the strength and type of the correlation. For example, in case of a second order phase transition
the correlation length diverges with a characteristic critical exponent, usually denoted as ν.

DOI: 10.1007/978-3-642-01539-7 20
c⃝Springer 2010

Landolt-Börnstein
New Series I/23

Correlation function (in configuration space!):

Correlation length (in configuration space!):   �i,j
<latexit sha1_base64="vi6oKb1afP5PLGfbqGR7cCGHg3c="></latexit>

Relation to cumulant: K2 = V T 3�(2) i,i
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Cumulants are extensive: Kn � V
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�(2) i,j =
1

V T 3

�
d3xd3y ���i(x)��j(y)� =

1

T 3
�̄i�i,j +

1

T 3

�
d3rCi,j(r)
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Correlation length
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Static correlation function;  
“Yukawa” potential with mass: m � 1

�
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C(r) � exp[�r/�]

r
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simple “sigma” exchange

Critical point (second order)
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Cross over
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Critical point
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• Second order phase transition 
• Fluctuations at all length scales 

• Critical opalescence 
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First approximation: 
count σ propagators
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Finite size scaling
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Second order (critical point)
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QCD at µ=0 is cross-over
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Aoki et al, Nature 43:675-678,2006

Figure 3: Continuum extrapolated susceptibilities T 4/(m2∆χ) as a function of 1/(T 3
c V ). For true phase tran-

sitions the infinite volume extrapolation should be consistent with zero, whereas for an analytic crossover the
infinite volume extrapolation gives a non-vanishing value. The continuum-extrapolated susceptibilities show no
phase-transition-like volume dependence, though the volume changes by a factor of five. The V→∞ extrapo-
lated value is 22(2) which is 11σ away from zero. For illustration, we fit the expected asymptotic behaviour for
first-order and O(4) (second order) phase transitions shown by dotted and dashed lines, which results in chance
probabilities of 10−19 (7 × 10−13), respectively. Error bars are s.e.m with systematic estimates.

Figure 4: The line of constant physics. We show our choice for ms (strange quark mass) and 20mud (u,d quark
masses) in lattice units as functions of 6/g2.
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Increase chemical potential by lowering the beam energy 

In reality, we add baryons (nucleons) from target and projectile  
to mid-rapidity 



What to expect from experiment?
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Expectation from Calculations 

Characteristic “Oscillating pattern” 
is expected for the QCD critical 
point but the exact shape depends 
on the location of freeze-out with 
respect to the location of CP 

   - M. Stephanov, PRL107, 052301(2011) 
   - V. Skokov, Quark Matter 2012 
   - J.W. Chen, J. Deng, H. Kohyyama, arXiv: 
1603.05198, Phys. Rev. D93 (2016) 034037 

20                  200 

N. Xu, CPOD 2016
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energies above 19.6 GeV, the values of v2
3{2} linearly increase with the log(psNN ) for all of the four centralities.

Figure 5 right shows psNN dependence of the v2
3{2} scaled by the charged particle multiplicity per participant pair

nch,PP =
2

Npart
dNch/d⌘ for three centralities. Experimentally, the nch,PP has been measured and monotonically increase

with psNN [23], which can be related to the energy density of the system. The v2
3{2}/nch,PP shows a local minimum

around 20 GeV, which is the consequence of a relatively flat trend for v2
3{2} and monotonically increasing trend for the

nch,PP in the energy range 7.7 <psNN< 20 GeV. Physics wise, the v2
3{2}/nch,PP should reflect the ability of the system

to convert the initial geometry fluctuations to the final state. Thus, the local minimum in v2
3{2}/nch,PP could indicate

an anomalous low pressure inside the matter created in the collisions near psNN=20 GeV, where a minimum is also
observed for the slope of net-proton directed flow. Apparently, these observations can be interpreted by softening of
equation-of-state due to presence of the first order phase transition. However, conclusions only can be made after
carrying out careful theoretical and model studies for the dynamical evolution of the system including the physics of
first order phase transition at finite µB.

2.5. Net-proton number fluctuations
Fluctuations of conserved quantities, such as baryon (B), charge (Q) and strangeness (S) numbers, have been

proposed as a sensitive probe to search for the signature of the QCD critical point in heavy-ion collisions [24]. These
fluctuations are sensitive to the correlation length (⇠) [24] and can be directly connected to the susceptibility of the
system computed in theoretical calculations, such as Lattice QCD [25, 26, 27] and HRG models [28]. The STAR
experiment has measured various order fluctuations of net-proton (Np � Np̄, proxy for net-baryon), net-charge and
net-kaon (proxy for net-strangeness) numbers in the Au+Au collisons at psNN=7.7, 11.5, 14.5, 19.6, 27, 39, 62.4 and
200 GeV [29, 30, 31].
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Figure 6. (Color online) Left: Energy dependence of �2 of net-proton distributions and Middle: S� divided by Skellam (Poisson) expeca-
tions for 0-5%, 5-10% and 70-80% centralities of Au+Au collisions at psNN=7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, 200 GeV measured by STAR.
The experimental data is compared with Poisson expectations (dashed lines) and the UrQMD transport model calculations (shade bands ). The
statistic and systematic errors are plotted as vertical bar and brackets, respectively. Right: A schematic sketch for theoretically predicted neg-
ative(red)/positive(blue) critical contribution regions for �2 near the QCD critical point and possible chemical freeze-out regions for Au+Au
collisions 14.5 (green), 16.5 (purple) and 19.6 GeV (black).

Figure 6 left shows the e�ciency corrected �2 of net-proton distributions as a function of psNN for 0-5%, 5-10%
and 70-80% centralities of Au+Au collisions measured by STAR [31, 32]. The protons and anti-protons numbers
are measured with transverse momentum 0.4 < pT < 2 GeV/c and at mid-rapidity |y| < 0.5. The �2 shows a clear
non-monotonic variation with psNN for 0-5% centrality with a minimum around 20 GeV. Above 39 GeV, the values of
�2 are close to the unity for both central and peripheral collisions and deviate significantly below unity for the 0-5%
most central collisions at 19.6 and 27 GeV, then become above unity at 0-5% centrality in the energies below 19.6
GeV. Another intriguing structure observed in psNN dependence for the �2 of net-proton distributions in Au+Au
collisons is the so called ”Oscillation”. Namely, the oscillation is a structure that represents two observations, the so
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Latest STAR result on net-proton 
cumulants
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K4/K2 follows expectation, K3/K2 no so much….. 
URQMD totally fails to get trend for K4/K2 !
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The measurement process

44

Energy Dependence of Moments of Net-Proton and Net-Charge Multiplicity Distributions at STAR
Xiaofeng Luo
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Figure 3: (Color online) Energy dependence of efficiency corrected cumulant ratios κσ2 = C4/C2 and
Sσ =C3/C2 of net-proton distributions in Au+Au collisions at different centralities (0∼ 5%,5∼ 10%,30∼
40%,70∼ 80%).

unity at 7.7 GeV. The Sσ at 0∼ 5% centrality bin shows a large drop at 7.7 GeV. One may note that
we only have statistical errors shown in the figure, which are still large due to limited statistics. The
systematical errors, which are dominated by the efficiency correction and the particle identification,
are being studied.

Large acceptance is crucial for fluctuations of conserved quantities in heavy-ion collisions
to probe the QCD phase transition and critical point. The signals for the phase transition and/or
CP will be suppressed with small acceptance. In the Fig. 4, we show the energy dependence
of efficiency corrected κσ 2 =C4/C2 and Sσ /Skellam of net-proton distributions with various pT
and rapidity range for 0 ∼ 5% most central Au+Au collisions. The Skellam baseline assumes the
protons and anti-protons distribute as independent Poisson distributions. It is constructed from the
efficiency-corrected mean values of the protons and anti-protons. It is expected to represent the
thermal statistical fluctuations of the net-proton number [24]. The κσ 2 and Sσ /Skellam are to be
unity for Skellam baseline as well as in the Hadron Resonance Gas model. In the two upper panels
of Fig. 4, when we gradually enlarge the pT or rapidity acceptance, the values of κσ 2 show a small
changes close to unity at energies above 39 GeV, while below 39 GeV, more pronounced structure
is observed for a larger pT or rapidity acceptance. In the two lower panels of Fig. 4, when we
enlarge the pT or rapidity acceptance, the Sσ /Skellam shows strong suppression with respect to
unity and monotonically decrease with energy. In contrast to κσ 2, the significantly increase above
unity at 7.7 GeV is not observed in Sσ /Skellam, but shows strong suppression below unity. The
published results are shown as solid red triangles in the figure.

The efficiency-corrected net-charge results are shown in Fig. 5. We did not observe non-
monotonic behavior for Sσ and κσ 2 within current statistics for net-charge. The expectations from

7



Or in the real world…..
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Modeling the detector 
(multiplicities only)

46

Detector maps TRUE number of particles 
onto OBSERVED number of particles 

B is matrix which  
controls the mapping

TrueObserved

N

n
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Charged-Particle Multiplicity in Proton–Proton Collisions 17
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Figure 3. The need for unfolding. The left panel shows a measured spectrum in a
limited region of phase space superimposed with the true distribution that caused
the entries in one single measured bin (exemplarily at multiplicity 30 indicated by
the line). Clearly the shape of this true distribution depends on the shape of the
multiplicity distribution given by the model used (a suggestive example is if the true
spectrum stopped at a multiplicity of 40: the true distribution that contributed to the
measured multiplicity of 30 would clearly be different, still events at a multiplicity
of 30 would be measured). Inversely, in the right panel, the true distribution is
shown superimposed with the measured distribution caused by events with the true
multiplicity 30 (exemplarily). The shape of this measured distribution still depends on
the detector simulation, i.e., the transport code and reconstruction, but not on the
multiplicity distribution given by the model (only events with multiplicity 30 contribute
to the shown measured distribution).

3.1.2. Unfolding of Multiplicity Distributions Given a vector T representing the true
spectrum, the measured spectrum M can be calculated using the detector response

matrix R:

M = RT. (34)

The aim of the analysis is to infer T from M . Simple weighting, i.e., assuming that a
measured multiplicity m is caused ‘mostly’ by a true multiplicity t, would not be correct.

This is illustrated in Figure 3. Analogously, adding for each measured multiplicity

the corresponding row of the detector response matrix to the true distribution is also

incorrect. This is model-dependent and thus may produce an incorrect result. On the

other hand the measured spectrum which is the result of a given true multiplicity is only

determined by the detector simulation and is independent of the assumed spectrum.
Given a measured spectrum, the true spectrum is formally calculated as follows:

T = R−1M. (35)

J-F. Grosse-Oetringhaus,  
K. Reygers arXiv:0912.0023v2

measure  
in this bin

True particles 
contributing

true particles  
in this bin

measured particles 
contributing



Unfolding
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TrueObserved

To get TRUE P(N) we need to invert matrix B so that

P (N) =
�

n

B�1(N, n, �, . . .)p(n)
<latexit sha1_base64="OKb9ZS7h7Jdeg/R6jIbOiM7aiyg="></latexit>

True Observed

This is called UNFOLDING

In practice simple inverting does not work!



Or in the real world…
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Example: Binomial
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7

A. Multiplicity distribution

Our starting relation is

p(n) =
1X

N=n

P (N)
N !

n!(N � n)!
✏n(1� ✏)N�n, (18)

which can also be cast in matrix form

p(n) = B(n,N)P (N), (19)

where elements of B are given by Eq. (2). p is the measured distribution and P is the true one. To make analytical
calculations we assume that ✏ does not depend on N . Later on we show numerical calculation with ✏ depending on
N . So the problem of unfolding the multiplicity distribution is equivalent to inverting the above equation. We note,
that although we will assume here that B(n,N) is given by binomial our discussion is valid for other choices as well,
as long as B(n,N) is not a singular matrix.

Suppose that in our experiment we measure n from n = 0 to n = M , where M is su�ciently large so that P (N) ' 0
for all N > M . In this case the matrix gets finite and for example if M = 4 we have

0

BBBBB@

p(0)
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p(4)

1

CCCCCA
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0
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1
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0
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P (0)

P (1)

P (2)

P (3)

P (4)

1

CCCCCA
. (20)

Our goal is to solve equation (19) and obtain P (N). One immediate problem is that the matrix B is practically
singular in realistic situations. Indeed, the determinant of the triangular matrix B is given by a product of its diagonal
elements. We obtain

det(B) =
Yi=M

i=0
B(i, i) =

Yi=M

i=0
✏i = ✏0+1+...+M�1+M = ✏M(M+1)/2. (21)

For example for ✏ = 0.7 andM = 100 we obtain det(B) ⇠ 10�782, which is zero for all practical purposes. Consequently
solving Eq. (19) usually leads to unphysical P (N). However we will show later that even though P (N) is usually
unphysical the obtained cumulants are correct.

In the case when B is given by a binomial distribution the inverse relation can be given analytically,

P (N) =
1X

n=0

p(n)
n!

N !(n�N)!

1

✏n
(�1 + ✏)n�N , (22)

or in other words, the inverse of the binomial matrix is given by

B�1(N,n) =
n!

N !(n�N)!

1

✏n
(�1 + ✏)n�N , (23)

so that5

P (N) = B�1(N,n)p(n), (24)

or, explicitly, the first few terms,
0
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As seen from Eq. (22), P (N) is prone to large errors since we add many terms of alternating sign. This is the main
reason why P (N) is usually unphysical. This is especially problematic since p(n) will only be known within statistical
uncertainties. However, as we will argue below the resulting cumulants are usually correct (within statistical errors)
even if P (N) is unphysical.

5 We note that in practical applications inverting a pseudo-singular matrix B is not advised. Instead, equations should be solved directly
taking advantage of the fact that B is triangular (by definition N � n).

Bn,N PNpn    =

Theoretically: B is triangular

In Practice:     Who knows… is the detector even “binomial”

Binomial probability ε<1 is often called “efficiency”

Bn,N almost singular !   STAR: 0.6<ε<0.8



Binomial allows to invert  
(at least for cumulants)
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Is B(n,N) binomial ?
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Moments of Net-Proton and Net-Charge Multiplicity Distributions at STAR Xiaofeng Luo

detector at STAR for particle identification. This would allow us to have more protons and anti-
protons (about 2 times) in the net-proton moment analysis. The published net-charge results will
be also discussed.
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Figure 1: (Color online) Centrality dependence of mid-rapidity detecting efficiency for protons and anti-
protons in two pT ranges, 0.4 < pT < 0.8 GeV/c (circles) and 0.8 < pT < 2 GeV/c (triangles), in Au+Au
collisions at √sNN=7.7 , 11.5, 19.6, 27, 39, 62.4 and 200 GeV. Black solid points represent efficiency of
protons and red empty points are the efficiency of anti-protons.

Figure 1 shows the centrality dependence of detection efficiency for protons and anti-protons
in two pT ranges, 0.4 < pT < 0.8 GeV/c (circles) and 0.8 < pT < 2 GeV/c (triangles), in Au+Au
collisions at √sNN=7.7 , 11.5, 19.6, 27, 39, 62.4 and 200 GeV. The efficiency of proton and anti-
proton at high pT , 0.8 < pT < 2 GeV/c is significantly lower than that of low pT , 0.4 < pT < 8
GeV/c. This is a result of the ToF matching efficiency from the ToF detector at high pT . At low
pT , only the TPC is used to identify protons and anti-protons. Thus, the total efficiency for protons
and anti-protons at low pT can be obtained as Eff( 0.4 < pT < 0.8)=Eff(TPC, 0.4 < pT < 0.8 )
and efficiency at high pT is calculated as Eff( 0.8 < pT < 2)=Eff(TPC, 0.8 < pT < 2 )*Eff(ToF,
0.8 < pT < 2). The TPC efficiency of protons and anti-protons are obtained from the so-called
embedding simulation technique and the ToF matching efficiency can be calculated from the data.
The efficiency increases from central to peripheral collisions for all energies. Due to material
absorption of anti-protons, the efficiency of anti-protons is slightly lower than that of protons.
Those efficiency numbers in Fig. 1 will be used in the efficiency correction formulae for the
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The most obvious correction: 
Multiplicity dependence of efficiency

2

in which case the knowledge ✏ is su�cient to characterize the distribution. To which extent such an assumption is
valid can only be verified by a detailed simulation of a given detector system.

Usually, the e�ciency ✏ is assumed to be constant, i.e. independent of N . In this case, factorial moments of the
produced and observed particles are simply related by [1]

fi = ✏iFi, (3)

where the factorial moments are defined by

Fi =
X

N
P (N)

N !

(N � i)!
, fi =

X
n
p(n)

n!

(n� i)!
. (4)

Given the above relation for the factorial moments, e�ciency corrections for the various cumulants are readily derived
[1]. However, in reality the e�ciency may depend on the multiplicity of particles under consideration. In addition, as
already mentioned, the e�ciency distribution may not be exactly binomial. In these cases, the above simple formula
(3) will not hold and, as we will show in this paper, may lead to wrong conclusions.

Recent preliminary results by the STAR collaboration [10] at the lowest available RHIC energies show that the
e�ciency corrections play a crucial role in a proper interpretation of data. Therefore, it is essential that the correct
unfolding procedure is applied. It is the purpose of this note to discuss various corrections and modifications to
the unfolding procedure, and we should point out that we will only discuss the most simple and straightforward
unfolding methods and apply them to cumulants. There are other, more refined, methods used to correct multiplicity
distributions (see e.g. [11–13]). However, we are not aware that their suitability for the determination of higher order
cumulants have so far been explored, and we hope that this note may motivate some work in applying these other
methods to cumulant measurements.

This paper is organized as follows: In the next section we will show how the dependence of the e�ciency on the
number of particles changes the results. After that we will discuss the e↵ect of non-binomial e�ciency distributions
by studying a few alternative distributions. Then we will discuss the simplest unfolding procedure. We will finish
with a few comments and conclusions.

II. MULTIPLICITY DEPENDENT EFFICIENCY

In most experiments, the e�ciency depends on the number of particles in the detector. This is also the case for
the STAR experiment, where the e�ciency does depend on the total number of charged particles, and thus may
also depend on the number of particles under consideration, N , such as protons. While this does not preclude the
distribution B from having the binomial form, Eq. (2), we now have an e�ciency ✏(N) that depends on the number
of produced particles, N . Consequently the relation between the factorial moments

fi =
X

N
✏i(N)P (N)

N !

(N � i)!
, (5)

is not as simple as in Eq. (3). Furthermore, the unfolding derived in [1] and used by the STAR collaboration [6] will
not be possible anymore, even for a binomial e�ciency distribution B.

In order to estimate the e↵ect of a multiplicity dependent e�ciency, let us consider a simple example based on
a Poisson distribution for the produced particles and assume that the e�ciency depends linearly on the number of
produced particles N ,

P (N) =
hNiN

N !
e�hNi,

✏(N) = ✏0 + ✏0(N � hNi), (6)

where ✏0 is the average e�ciency ✏0 =
P

N P (N)✏(N). In this case, the true cumulants ratios K4,5,6/K2 equal 1.
Using Eq. (5) the factorial moments of the observed distribution are then

f1 = hNi (✏0 + ✏0),

f2 = hNi2
⇥
(✏0 + 2✏0)2 + hNi (✏0)2

⇤
,

f3 = hNi3
⇥
(✏0 + 3✏0)3 + hNi (✏0)2(3✏0 + 10✏0)

⇤
,

f4 = hNi4
⇥
(✏0 + 4✏0)4 + hNi (✏0)2(6✏20 + 52✏0✏

0 + 113(✏0)2 + 3 hNi (✏0)2)
⇤
, (7)

STAR
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4

1. Hypergeometric distribution

As the first example we consider the hypergeometric distribution. Suppose we have an urn with Nw white balls
and Nb black balls. For each produced particle we sample a ball, if it is white we accept a particle and if it is black
we reject. In the case of the binomial distribution we return balls to the urn and for the hypergeometric distribution
balls are not returned. In this case once we accept a particle (a white ball is removed from the urn) the probability
to accept the next one is a bit smaller. The initial probability to accept a particle is given by Nw/(Nw + Nb). The
probability to accept n particles at a given produced N is given by (N  Nw +Nb)

B(n,N) =
1�Nw+Nb

N

�
✓
Nw

n

◆✓
Nb

N � n

◆
, (9)

where we chose

Nw = 2↵N, Nb = ↵N. (10)

In this case

hniN
N

=
Nw

Nw +Nb
=

2

3
(11)

for each value of N , which corresponds to ✏ = 2/3 for the binomial distribution. We note that in the limit of ↵ ! 1
the hypergeometric distribution approaches a binomial.3 In Fig. 2 we show several curves for di↵erent values of ↵
and fixed N = 40. As seen the hypergeometric distribution results in a narrower distribution than binomial4.

Finally we compute p(n) using Eq. (1) and calculate the factorial moments fi. Next we correct them Fi = fi/✏i

and obtain the values presented in Tab. I.

FIG. 2. The hypergeometric distribution for di↵erent values of ↵ compared with the binomial distribution (black points). Here

N = 40 and ✏ = 2/3.

Hypergeometric ↵ = 0.6 ↵ = 1.0 ↵ = 2.0 ↵ = 5.0

K3/K2 1.16 1.12 1.07 1.03

K4/K2 0.66 0.88 0.98 1.00

K5/K2 2.19 1.68 1.23 1.05

K6/K2 -3.99 -1.38 0.31 0.89

TABLE I. The obtained values of Kn/K2 for the hypergeometric distribution, using Fi = fi/✏
i
with ✏ = 2/3, for di↵erent

values of ↵ as presented in Fig. 2.

3 For Nw/N ! 1 and Nb/N ! 1 the fact that balls are not returned to the urn is irrelevant.
4 By expressing B(n,N), Eq. (9), in terms of � functions, one is not restricted to integer values for Nb and Nw allowing to consider rather
narrow distribution such as the example of ↵ = 0.6 discussed here.
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2. Beta-binomial distribution

The beta-binomial distribution is obtained from the binomial one when the binomial success probability is random
and follows the beta distribution. Another interpretation (for positive integer ↵ and � being the numbers of white
and black balls, respectively) is similar to the hypergeometric distribution however in this case once a white ball is
drawn two white balls are returned to the urn (and similar for black balls). The resulting distribution of n at a given
N is broader than binomial and is given by

B(n,N) =

✓
N

n

◆
Beta(n+ ↵, N � n+ �)

Beta(↵,�)
. (12)

where

Beta(x, y) =

ˆ 1

0
tx�1 (1� t)y�1 dt =

�(x)�(y)

�(x+ y)
(13)

is the beta function or Euler integral of the first kind. Taking

� = ↵
1� ✏

✏
, (14)

we obtain

hniN
N

= ✏, (15)

that is the e�ciency does not depend on N . When ↵ ! +1 the beta-binomial distribution goes into binomial. In
Fig. (3) we present four curves for N = 40, ✏ = 0.7 and di↵erent values of ↵.

Assuming the beta-binomial distribution we compute p(n) using Eq. (1) with P (N) given by Poisson and calculate
the factorial moments fi. Using Fi = fi/✏i we obtain the values presented in Tab. II.

FIG. 3. The beta-binomial distribution for di↵erent values of ↵ compared with the binomial distribution (black points). Here

N = 40 and ✏ = 0.7.

Beta-binomial ↵ = 30 ↵ = 60 ↵ = 150 ↵ = 1000

K3/K2 1.28 1.24 1.13 1.02

K4/K2 0.82 1.45 1.35 1.07

K5/K2 -1.11 1.15 1.63 1.16

K6/K2 5.71 -0.44 1.80 1.32

TABLE II. The obtained values of Kn/K2 for the beta-binomial distribution, using Fi = fi/✏
i
with ✏ = 0.7, for di↵erent values

of ↵ as presented in Fig. 3.
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Compare Data with Lattice QCD 
and other field theoretical models

• Lattice cannot calculate hadron abundances 
• Cumulants are well defined quantities 
• Compare cumulants !? 

- Baryon number conservation 
- Experiment measures protons not all baryons 
- Volume is not fixed in experiment 
- Experiment has finite momentum space coverage 

(usually)
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2

number. In particular, while the freeze-out temperature
might be flavor-dependent [20], the chemical potentials as
a function of the collision energy should be the same for
all species. The present level of precision reached by lat-
tice QCD results, obtained at physical quark masses and
continuum-extrapolated, allows to perform this check for
the first time.

One more caveat is in order, since experimentally only
the net-proton multiplicity distribution is measured, as
opposed to the lattice net-baryon number fluctuations.
Recently it was shown that, once the e↵ects of resonance
feed-down and isospin randomization are taken into ac-
count [21, 22], the net-proton and net-baryon number
fluctuations are numerically very similar [23].

In this paper we show for the first time that it is possi-
ble to find a consistency between the freeze-out parame-
ters yielded by electric charge and baryon number fluctu-
ations. This is achieved by systematically comparing our
continuum-extrapolated results for higher order fluctua-
tions of these conserved charges [11] to the corresponding
experimental data by the STAR collaboration at RHIC
[7, 8]. We are using the newly published, e�ciency-
corrected experimental results for the net-charge fluctua-
tions and combine them with our lattice results presented
in Ref. [11]. We also extract independent freeze-out con-
ditions from the net-proton fluctuations and systemati-
cally compare the outcomes of the two. Details of the
lattice simulations can be found in [11].

The fluctuations of baryon number, electric charge and
strangeness are defined as

�BSQ
lmn =

@ l+m+n(p/T 4)

@(µB/T )l@(µS/T )m@(µQ/T )n
; (1)

they are related to the moments of the multiplicity distri-
butions of the corresponding conserved charges. It is con-
venient to introduce the following, volume-independent
ratios

�3/�2 = S� ; �4/�2 = �2

�1/�2 = M/�2 ; �3/�1 = S�3/M . (2)

The chemical potentials µB , µQ and µS are related
in order to match the experimental situation: the fi-
nite baryon density in the system is due to light quarks
only, since it is generated by the nucleon stopping in
the collision region. The strangeness density hnSi is
then equal to zero for all collision energies, as a conse-
quence of strangeness conservation. Besides, the electric
charge and baryon-number densities are related, in order
to match the isospin asymmetry of the colliding nuclei:
hnQi = Z/AhnBi. Z/A = 0.4 represents a good approxi-
mation for Pb-Pb and Au-Au collisions.

As a consequence, µQ and µS depend on µB so that
these conditions are satisfied. This is achieved by Taylor-
expanding the densities in these three chemical potentials

up to µ3
B [10]:

µQ(T, µB) = q1(T )µB + q3(T )µ
3
B + ...

µS(T, µB) = s1(T )µB + s3(T )µ
3
B + ... (3)

Our continuum extrapolated results for the functions
q1(T ), q3(T ), s1(T ), s3(T ) were shown in [11]. The
quantities that we consider to extract the freeze-out T
and µB , are the ratios RB

31 = �B
3 /�

B
1 and RB

12 = �B
1 /�

B
2

respectively, at values of (µB , µQ, µS), which satisfy the
pyhsical conditions discussed in the previous paragraph.
As shown in Ref. [11], the leading order in �B

3 /�
B
1 is

independent of µB , while the LO in �B
2 /�

B
1 is linear in

µB . This allows us to use RB
31 to extract the freeze-out

temperature; the ratio RB
12 is then used to extract µB

(notice that our results for RB
12 are obtained up to NLO

in µB).

We then independently extract µB from �Q
1 /�

Q
2 (which

is also linear in µB to LO), in order to check whether dif-
ferent conserved charges yield consistent freeze-out pa-
rameters. In Ref. [11], we compared the lattice results
for �Q

3 /�
Q
1 to the preliminary, e�ciency-uncorrected data

from the STAR collaboration, to extract an upper limit
for the freeze-out temperature. We then obtained the
corresponding chemical potentials by performing the
same kind of comparison for �Q

1 /�
Q
2 . The new, e�ciency-

corrected results for the moments of the net-charge mul-
tiplicity distribution from STAR show significant di↵er-
ences, compared to the uncorrected ones. This yields
di↵erent values for µB , compared to the ones obtained
in [11]. As for �Q

3 /�
Q
1 , the experimental uncertainty on

the corrected data is such that presently it is not possible
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to extract a meaningful freeze-out temperature from this
observable.

In Fig. 1 we show the comparison between the lattice

results for �B
3 (T,µB)

�B
1 (T,µB)

and the experimental measurement

of Sp�3
p/Mp by the STAR collaboration [7]. The lat-

ter has been obtained for a 0-10% centrality, at the four
highest energies (

p
s = 27, 39, 62.4, 200 GeV). Since the

curvature of the phase diagram is small around µB = 0
[24], this average allows to determine the freeze-out tem-
perature. The green-shaded area shows the valid temper-
ature range: due to the uncertainty on the lattice results
in the low-temperature regime, it is only possible to ex-
tract an upper value for the freeze-out temperature: the
freeze-out takes place at a temperature Tf

<⇠ 148 MeV,
which is somewhat lower than expected from previous
analyses [25] (allowing for a two-sigma deviation for the
lattice simulations and the experimental measurements,
the highest possible Tf is 151 MeV). In Refs. [26, 27] we
have published the lattice determination of the transition
temperature from various chiral observables in the range
147-157 MeV. For the minimum of the speed of sound
we found 145(5) MeV in [28]. The discussed freeze-out
temperature is thus in the cross-over region around or
slightly below the central value.

We now proceed to determine the freeze-out chemical
potential µB , by comparing the lattice results for RB

12 and
RQ

12 (as functions of the chemical potential, and in the
temperature range (140  Tf  150) MeV) to the exper-
imental results for Mp/�2

p and MQ/�2
Q published by the

STAR collaboration in Refs. [7, 8, 29]. This comparison
is shown in the two panels of Fig. 2: the two quantities
allow for an independent determination of µB from elec-
tric charge and baryon number: the corresponding values
are listed in Table I, and shown in Fig. 3. Consistency
between the two values of baryon-chemical potential is
found for all collision energies (the non-monotonicity of
the lattice results for RB

12 at µB � 130 MeV does not
allow a determination of µB from this observable atp
s = 27 GeV). Let us now compare the chemical po-

tentials in Table I to those found earlier in statistical fits
[12, 14, 30]. Plotting the parametrization of Refs. [12, 30]
together with our values we find a remarkable agree-
ment (see Fig. 3). Note that, for the freeze-out tem-
perature, statistical models typically yield a somewhat
higher value: e.g. 164 MeV in Refs. [12, 31]. Towards
the lower end in temperature range we find Ref. [32]
with Tf = 155 ± 8 MeV with µB = 25 ± 1 MeV, atp
s = 200 GeV.

The comparison of our lattice results to the latest
e�ciency-corrected STAR data hints at a consistency of
the freeze-out chemical potential if we assume an agree-
ment in the temperature. This assumption was well mo-
tivated by the proton and charge skewness data. Let us
now take the assumption further: if the freeze-out can be
described by the same temperature and chemical poten-
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p
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2
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p
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tials for charge and protons, then one can create a com-
bined observable: RQ

12/R
B
12 = [MQ/�2

Q]/[MB/�2
B ]. Here,

the volume factor of the charge and baryon (proton) mea-
surements cancel separately. Should our assumption be
correct, this ratio of ratios is the preferable thermometer:
it is far easier to obtain both for lattice and experiment
since it does not involve skewness or kurtosis. We have
lattice data available to ⇠ µ2

B order, which we use when
comparing our results to data. Such a comparison is
shown in Fig. 4. Contrary to the skewness thermometer,
here we see a clear monotonic temperature dependence
without the hardly controllable lattice errors at low tem-
peratures. This allows for the identification of a narrow

For example: Wuppertal-Budapest (arXiv:1305.5161) 
(similar from Hot QCD)



Baryon number conservation

59

Lattice works in grand-canonical ensemble: 
Baryon number conserved only on average 

Experiment: Baryon number is conserved event-by-eventA. BZDAK, V. KOCH, AND V. SKOKOV PHYSICAL REVIEW C 87, 014901 (2013)

FIG. 1. (Color online) Ratios of odd- and even-order cumulants
as a function of the fraction of measured baryons, p. The parameters
are B = 300, ⟨NB⟩ = 400, and ⟨NB̄⟩ = 100.

As already mentioned, the ratios of the odd-order cumulants
depend only on p. This allows us to construct the following
combination:

D = R5,1 − R3,1
[
1 − 3

4 (1 + γ )(3 − γ )
]
, (18)

such that D = 0 for the baryon-conservation-corrected dis-
tribution PB(n), Eq. (7), for any values of p, z, and B. Here,
γ = ±

√
1 + 8R3,1. The upper (lower) sign should be taken for

p < 3/4 (p > 3/4).8 Also, D = 0 for the Skellam distribution.

8For an analysis of experimental data, the case with p < 3/4 should
be considered.

FIG. 2. (Color online) Ratios of odd- and even-order cumulants
as a function of the fraction of measured baryons, p, in the range of
values which are of experiment interest. The parameters are B = 300,
⟨NB⟩ = 400, and ⟨NB̄⟩ = 100.

Therefore, a deviation of D from zero may indicate physics
that is not related to global baryon conservation.

IV. DISCUSSION AND COMMENTS

Several comments are in order regarding our results
obtained in the previous sections:

(i) The distribution (7) depends on z =
√

⟨NB⟩⟨NB̄⟩,
where ⟨NB⟩ (⟨NB̄⟩) is the total baryon (antibaryon)
number present in the Skellam distributions (1) and
(2). Thus, ⟨NB⟩ (⟨NB̄⟩) is related to the system without
baryon conservation. It is natural to expect that baryon
conservation will modify ⟨NB⟩ (⟨NB̄⟩); however, as we
argue below this correction is negligible. A straightfor-
ward calculation gives

⟨NB,B̄⟩C = z
IB∓1(2z)
IB(2z)

, (19)

where the upper (lower) sign corresponds to ⟨NB⟩C
(⟨NB̄⟩C), with ⟨NB⟩C − ⟨NB̄⟩C = B. Here the subscript
⟨·⟩C refers to averages obtained with full baryon number
conservation. Under the constraint ⟨NB⟩ − ⟨NB̄⟩ = B,
one can express z in terms of ⟨NB,B̄⟩C, and to a very
good approximation we find

z ≈
√

⟨NB⟩C⟨NB̄⟩C. (20)

Using the properties of the modified Bessel functions,
one can show that corrections to Eq. (20) are important
only if both B and ⟨NB⟩C⟨NB̄⟩C simultaneously assume
a value of the order of one or smaller. This is never
the case in heavy-ion collisions. Relation (20) together
with the requirement that ⟨NB⟩ − ⟨NB̄⟩ = B ensures
that ⟨NB⟩ ≈ ⟨NB⟩C and ⟨NB̄⟩ ≈ ⟨NB̄⟩C to very good
precision. The same identities also hold if we only
consider protons. Therefore, the formalism developed
in the previous section is of a great phenomenological
value since it allows us to calculate the effect of baryon
number conservation on the probability distribution and
its cumulants given experimentally determined average
yields.

(ii) We have shown that the odd-order cumulants do not
depend on ⟨NB,B̄⟩; their ratios are independent of B
and uniquely defined by one parameter, the fraction
of observed baryons (protons), p. This turns out to be
very useful for the phenomenological analysis of exper-
imental data. For example, chiral model calculations at
nonzero baryon densities show that both R3,1 and R5,1
are nontrivial functions of temperature and chemical
potential close to the crossover and the CEP. This is
demonstrated in Fig. 3, where we present the results
obtained in the Polyakov loop-extended quark-meson
model [17] for R3,1 and R5,1. We also show the new
observable D [see Eq. (18)], which exhibits strong,
temperature-dependent deviations from the baseline of
D = 0, even for temperatures below the pseudo-critical
one, T < Tpc. Therefore, effects due to a possible phase
transition should be accessible in experiment via an
analysis of this new observable D.
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Protons vs Baryons 

K4/K2=5

Fraction of BARYONS 
observed

K4/K2=1

K4/K2=-1

K4/K2=-5

prefect proton  
detector (p=0.5)

K4/K2

Fast isospin exchange 
a.k.a lots of pions: 

protons and neutrons follow 
binomial distribution  

with p~ 0.5 

(Kitazawa, Asakawa arXiv:1107.2755)

P (Np) =
B!

Np!(B � Np)!
pNp(1 � p)B�Np
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Example: “Charge” susceptibility

Equivalence of Integrated coordinate space and momentum space  
correlation function

Experiment almost never integrates ALL of momentum space! 

Lattice (hopefully) does integrate over all coordinate space
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Correlations: Lattice vs Data

⟨(δN )2⟩
⟨N ⟩

=1+⟨N ⟩∫Δ/2

Δ/2
C ( y 1, y 2)dy 1 dy2

⟨n( y1)( n( y2)−δ( y1− y2) )⟩=⟨n( y1)⟩⟨n( y2)⟩ (1+C ( y1 , y2))

⟨(δN )2⟩
⟨N ⟩

Δ
σ

“Charge conservation”

“Lattice result”

C ( y1, y2)∼exp(
−( y1− y2)

2

2σ2
)
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Alice Charge Flucts 
arXiv:1207.6068

may not be responsible for the centrality dependence of the
D measure.

The measured fluctuations may get diluted during the
evolution of the system from hadronization to kinetic
freeze-out because of the diffusion of charged hadrons in
rapidity. This has been addressed in Refs. [8,9], where a
diffusion equation has been proposed to study the depen-
dence of the net-charge fluctuations on the width of the
rapidity window. Taking the dissipation into account, the
asymptotic value of fluctuations may be close to the pri-
mordial fluctuations. This has been explored for the
ALICE data points by plotting hNch i!corr

ðþ#;dyn Þ and D as a

function of !" for three centrality bins, as shown in Fig. 3.
We observe that, for a given centrality bin, the D measure
shows a strong decreasing trend with the increase of!". In
fact, the curvature of D has a decreasing slope with a
flattening tendency at large !" windows. Following the
prescriptions of [8,9], we fit the data points with the func-

tional form, erfð!"=
ffiffiffi
8

p
#fÞ, which represents the diffusion

in rapidity space. Here, #f characterizes the diffusion at

freeze-out. The resulting values of #f are 0:41% 0:05,
0:44% 0:05, and 0:48% 0:07 for the 0%–5%, 20%–30%,
and 40%–50% centralities, respectively. The fitted curves
are shown as solid lines in Fig. 3. The dashed lines are
extrapolations of the fitted curves to higher !", which
yield the asymptotic values of D . For the top 5% centrality,
the measured values of D are 2:6% 0:02ðstatÞ % 0:15ðsystÞ
for !"¼1 and 2:3%0:02ðstatÞ%0:21ðsystÞ for !" ¼ 1:6.
The extrapolated value of D is 2:24% 0:09ðstatÞ%
0:21ðsystÞ.

The evolution of the net-charge fluctuations with beam
energy can be studied by combining the ALICE data with

those of the STAR experiment [12] at RHIC. In Fig. 4, we
present the values of hNch i!corr

ðþ#;dyn Þ (left axis) and D

(right axis) for the top central collisions from ALICE atffiffiffiffiffiffiffiffi
sNN

p ¼ 2:76 TeV and, for STAR, Au-Au collisions at
four different energies. The ALICE data points correspond
to !" ¼ 1 and 1.6, whereas, for STAR, the values
for !" ¼ 1 are shown. For the STAR data,
ðdNch =d"Þ!corr

ðþ#;dyn Þ are plotted instead of hNch i!corr
ðþ#;dyn Þ,

as the dNch =d" values are approximately equal to hNch i for
!" ¼ 1 at central rapidity. The theoretical predictions for
a HG and a QGP are indicated in the figure. In the absence
of any dynamic model, these predictions do not have a
dependence on the beam energy.
Figure 4 shows a monotonic decrease in the magnitude

of the net-charge fluctuations with increasing beam energy.
For the top RHIC energy of

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV, the mea-
sured value of fluctuation is observed to be close to the
HG prediction, whereas, at lower energy, the results are
above the HG value. At

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2:76 TeV, we observe
significantly lower fluctuations compared to those of
lower energies.
In summary, we have presented the first measurements

of dynamic net-charge fluctuations at the LHC in Pb-Pb
collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2:76 TeV in terms of !ðþ#;dyn Þ and
their corrected values !corr

ðþ#;dyn Þ (corrected for charge con-

servation and finite acceptance effects). The results for pp
collisions at the same center-of-mass energy are found to
be in agreement with hadron gas prediction. The values of
!ðþ#;dyn Þ and !corr

ðþ#;dyn Þ are seen to be negative in all cases,

indicating the dominance of the correlation of positive and
negative charges. A decrease in fluctuations is observed
while going from peripheral to central collisions. The D
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FIG. 3 (color online). hNch i!corr
ðþ#;dyn Þ (left axis) and D (right

axis) as a function of the !" window for three different central-
ity bins in the Pb-Pb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2:76 TeV. The data
points are fitted with the functional form erfð!"=

ffiffiffi
8

p
#fÞ. The

dashed lines correspond to the extrapolation of the fitted curves.
The points are shifted minimally along the x axis for a clear
view. Both statistical (error bars) and systematic (boxes) errors
are shown.
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FIG. 4 (color online). Energy dependence of the net-charge
fluctuations, measured in terms of hNch i!corr

ðþ#;dyn Þ (left axis) and

D (right axis) for the top central collisions. The results from the
STAR [12] and ALICE experiments are presented for !" ¼ 1
after the correction for the charge conservation. The ALICE
result for !" ¼ 1:6 is also shown. Both statistical (error bars)
and systematic (boxes) errors are plotted.
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Dependence on Rapidity window

63

• Kurtosis depends strongly 
on Rapidity window 

• Comparison with Lattice: 
- Lattice catches the full 

correlation length 
- need to expand rapidity 

window until signal 
saturates (after correcting 
for charge conservation)

X. Luo, EMMI Workshop, Nov. 2015

Nov. 2-6 23 / 29          Xiaofeng Luo,  EMMI Workshop 2015 GSI, Germany

Acceptance Study: pT and Rapidity

Significant pT and rapidity dependence are observed at low energies& 
Large acceptance is crucial for the fluctuation measurement.
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arXiv: 1503.02558 

Any comparison of Lattice to Data needs to assure that cumulants  
reach asymptotic value in experiment. 

So far this has NOT ben established for proton cumulants
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energies above 19.6 GeV, the values of v2
3{2} linearly increase with the log(psNN ) for all of the four centralities.

Figure 5 right shows psNN dependence of the v2
3{2} scaled by the charged particle multiplicity per participant pair

nch,PP =
2

Npart
dNch/d⌘ for three centralities. Experimentally, the nch,PP has been measured and monotonically increase

with psNN [23], which can be related to the energy density of the system. The v2
3{2}/nch,PP shows a local minimum

around 20 GeV, which is the consequence of a relatively flat trend for v2
3{2} and monotonically increasing trend for the

nch,PP in the energy range 7.7 <psNN< 20 GeV. Physics wise, the v2
3{2}/nch,PP should reflect the ability of the system

to convert the initial geometry fluctuations to the final state. Thus, the local minimum in v2
3{2}/nch,PP could indicate

an anomalous low pressure inside the matter created in the collisions near psNN=20 GeV, where a minimum is also
observed for the slope of net-proton directed flow. Apparently, these observations can be interpreted by softening of
equation-of-state due to presence of the first order phase transition. However, conclusions only can be made after
carrying out careful theoretical and model studies for the dynamical evolution of the system including the physics of
first order phase transition at finite µB.

2.5. Net-proton number fluctuations
Fluctuations of conserved quantities, such as baryon (B), charge (Q) and strangeness (S) numbers, have been

proposed as a sensitive probe to search for the signature of the QCD critical point in heavy-ion collisions [24]. These
fluctuations are sensitive to the correlation length (⇠) [24] and can be directly connected to the susceptibility of the
system computed in theoretical calculations, such as Lattice QCD [25, 26, 27] and HRG models [28]. The STAR
experiment has measured various order fluctuations of net-proton (Np � Np̄, proxy for net-baryon), net-charge and
net-kaon (proxy for net-strangeness) numbers in the Au+Au collisons at psNN=7.7, 11.5, 14.5, 19.6, 27, 39, 62.4 and
200 GeV [29, 30, 31].
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Figure 6. (Color online) Left: Energy dependence of �2 of net-proton distributions and Middle: S� divided by Skellam (Poisson) expeca-
tions for 0-5%, 5-10% and 70-80% centralities of Au+Au collisions at psNN=7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, 200 GeV measured by STAR.
The experimental data is compared with Poisson expectations (dashed lines) and the UrQMD transport model calculations (shade bands ). The
statistic and systematic errors are plotted as vertical bar and brackets, respectively. Right: A schematic sketch for theoretically predicted neg-
ative(red)/positive(blue) critical contribution regions for �2 near the QCD critical point and possible chemical freeze-out regions for Au+Au
collisions 14.5 (green), 16.5 (purple) and 19.6 GeV (black).

Figure 6 left shows the e�ciency corrected �2 of net-proton distributions as a function of psNN for 0-5%, 5-10%
and 70-80% centralities of Au+Au collisions measured by STAR [31, 32]. The protons and anti-protons numbers
are measured with transverse momentum 0.4 < pT < 2 GeV/c and at mid-rapidity |y| < 0.5. The �2 shows a clear
non-monotonic variation with psNN for 0-5% centrality with a minimum around 20 GeV. Above 39 GeV, the values of
�2 are close to the unity for both central and peripheral collisions and deviate significantly below unity for the 0-5%
most central collisions at 19.6 and 27 GeV, then become above unity at 0-5% centrality in the energies below 19.6
GeV. Another intriguing structure observed in psNN dependence for the �2 of net-proton distributions in Au+Au
collisons is the so called ”Oscillation”. Namely, the oscillation is a structure that represents two observations, the so
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around 20 GeV, which is the consequence of a relatively flat trend for v2
3{2} and monotonically increasing trend for the

nch,PP in the energy range 7.7 <psNN< 20 GeV. Physics wise, the v2
3{2}/nch,PP should reflect the ability of the system

to convert the initial geometry fluctuations to the final state. Thus, the local minimum in v2
3{2}/nch,PP could indicate

an anomalous low pressure inside the matter created in the collisions near psNN=20 GeV, where a minimum is also
observed for the slope of net-proton directed flow. Apparently, these observations can be interpreted by softening of
equation-of-state due to presence of the first order phase transition. However, conclusions only can be made after
carrying out careful theoretical and model studies for the dynamical evolution of the system including the physics of
first order phase transition at finite µB.
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Fluctuations of conserved quantities, such as baryon (B), charge (Q) and strangeness (S) numbers, have been

proposed as a sensitive probe to search for the signature of the QCD critical point in heavy-ion collisions [24]. These
fluctuations are sensitive to the correlation length (⇠) [24] and can be directly connected to the susceptibility of the
system computed in theoretical calculations, such as Lattice QCD [25, 26, 27] and HRG models [28]. The STAR
experiment has measured various order fluctuations of net-proton (Np � Np̄, proxy for net-baryon), net-charge and
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Figure 6 left shows the e�ciency corrected �2 of net-proton distributions as a function of psNN for 0-5%, 5-10%
and 70-80% centralities of Au+Au collisions measured by STAR [31, 32]. The protons and anti-protons numbers
are measured with transverse momentum 0.4 < pT < 2 GeV/c and at mid-rapidity |y| < 0.5. The �2 shows a clear
non-monotonic variation with psNN for 0-5% centrality with a minimum around 20 GeV. Above 39 GeV, the values of
�2 are close to the unity for both central and peripheral collisions and deviate significantly below unity for the 0-5%
most central collisions at 19.6 and 27 GeV, then become above unity at 0-5% centrality in the energies below 19.6
GeV. Another intriguing structure observed in psNN dependence for the �2 of net-proton distributions in Au+Au
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Back to data  
assuming that STAR has done their job
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K4

K2

“Baseline”

K4/K2 follows expectation, K3/K2 no so much….. 
URQMD totally fails to get trend for K4/K2 !

X. Luo, NPA 956 (2016) 75

K3/K2

Skellam

“Baseline”
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2

II. CUMULANTS AND CORRELATIONS FUNCTIONS

VK: VK: need to check if the ”coupling” is expected to increase with order of cumulant at critical
point. I thought so, this is where the scaling with the correlation length comes from. VK: I think
for this paper we should skip this discussion and concentrate on the signs, centrality and rapidity
dependence

Let us start by introducing the correlation functions, beginning with two particles. The two particle density for
particles with momenta p1 and p2, fl2 (p1, p2), is given by

fl2(p1, p2) = fl1(p1)fl1(p2) + C2(p1, p2), (1)

where fl1 (p) refers to the one particle density, and C2(p1, p2) represents the two-particle correlation function. Inte-
grating over the momenta we get

F2 © ÈN (N ≠ 1)Í =
ˆ

dp1dp2 fl2(p1, p2) = ÈNÍ2 +
ˆ

dp1dp2 C2(p1, p2), (2)

so that in the absence of correlations, C2 = 0, the particle number follows Poisson statistics,
+
N

2,
≠ ÈNÍ2 = ÈNÍ. In

general the two particle density and correlation function depend on the momenta of both particles. In the following,
we will restrict ourselves to correlations in rapidity and adopt the following notation

fl2 (y1, y2) =
ˆ

dpt,1d„1dpt,2d„2fl2 (p1, p2) ,

C2 (y1, y2) =
ˆ

dpt,1d„1dpt,2d„2C2 (p1, p2) ,

C2 =
ˆ

dy1dy2C2 (y1, y2) , (3)

and similarly for higher order particle densities and correlation functions.
The three particle density depends on the one and two-particle densities as well as the two and three-particle

correlation functions

fl3(y1, y2, y3) = fl1(y1)fl1(y2)fl1(y3) + fl1(y1)C2(y2, y3) + fl1(y2)C2(y1, y3)
+ fl1(y3)C2(y1, y2) + C3(y1, y2, y3). (4)

and is related to the third order factorial moment F3 = ÈN (N ≠ 1) (N ≠ 2)Í via

F3 =
ˆ

dy1dy2dy3fl3 (y1, y2, y3) = F
3
1 + 3F1C2 + C3, (5)

where C3 is the integrated genuine three-particle correlation function. Similarly the higher order factorial moment
are given by1

F4 = F
4
1 + 6F

2
1 C2 + 4F1C3 + 3C

2
2 + C4, (6)

F5 = F
5
1 + 5F1C4 + 10F

2
1 C3 + 10F

3
1 C2 + 15F1C

2
2 + 10C2C3 + C5, (7)

F6 = F
6
1 + 6F1C5 + 15F

2
1 C4 + 20F

3
1 C3 + 15F

4
1 C2 + 60F1C2C3 + 45F

2
1 C

2
2 + 15C2C4 + 10C

2
3 + 15C

3
2 + C6. (8)

At the same time, the particle number cumulant, Kn, can be expressed in terms of the factorial moments [6],

K1 © ÈNÍ = F1,

K2 © È(”N)2Í = F1 ≠ F
2
1 + F2,

K3 © È(”N)3Í = F1 + 2F
3
1 + 3F2 + F3 ≠ 3F1(F1 + F2), (9)

and

K4 © È(”N)4Í ≠ 3È(”N)2Í2

= F1 ≠ 6F
4
1 + 7F2 + 6F3 + F4 + 12F

2
1 (F1 + F2) ≠ 3(F1 + F2)2 ≠ 4F1(K1 + 3F2 + F3), (10)

1 See, e.g., Ref. [XXX] for explicit definitions of higher order correlation functions.

Cumulants

C2: Correlation Function

Kn =
�n

�(µ/T )n
ln Z

More details: Bzdak et al, arXiv:1607.07375, Lin et al arXiv:1512.09125
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Simple Algebra leads to relation between correlations Cn and Kn

Defining integrated correlations function

or vice versa

3

where ”N = N ≠ ÈNÍ. Formulas for the higher order cumulants can be found in Ref. [XXX].
Now we can relate the cumulants in terms of the correlation functions and the mean particle number ÈNÍ = F1

K2 = F1 + C2, (11)
K3 = F1 + 3C2 + C3, (12)
K4 = F1 + 7C2 + 6C3 + C4, (13)

and vice versa,with K1 = F1 = ÈNÍ

C2 = ≠K1 + K2, (14)
C3 = 2K1 ≠ 3K2 + K3, (15)
C4 = ≠6K1 + 11K2 ≠ 6K3 + K4, . (16)

Before we apply the above equations to extract the correlation strength from the STAR data, let us make a few
more remarks concerning these correlation functions.

Frequently in the literature, one refers to correlation function where the trivial dependence on the particle den-
sity/multiplicity is removed

cn (y1, ..., yn) = Cn (y1, ..., yn)
fl1 (y1) · · · fl1 (yn) , (17)

which we shall refer to as reduced correlation functions or simply couplings. For example in terms of the reduced
correlation functions the two particle density would be given as

fl2 (y1, y2) = fl1 (y1) fl2 (y2) [1 + c2 (y1, y2)] . (18)

The advantage of the reduced correlation functions is that they are directly sensitive to the dynamics, and should
remain constant if the only change is that of the particle abundances. This will prove helpful when studying for
instance the centrality dependence of the correlations.

Also, the correlation functions Cn are often referred to as “factorial cumulants” [7]
Integrating over rapidity we obtain

Ck = ÈNÍk
ck (19)

where ÈNÍ =
´

�Y dN/dy depends on the rapidity interval �Y and we denote

ck =
´

fl1 (y1) · · · fl1 (yk) ck (y1, ..., yk) dy1 · · · dyk´
fl1 (y1) · · · fl1 (yk) dy1 · · · dyk

. (20)

Using above definition we can write

K2 = ÈNÍ + ÈNÍ2
c2 (21)

K3 = ÈNÍ + 3 ÈNÍ2
c2 + ÈNÍ3

c3 (22)
K4 = ÈNÍ + 7 ÈNÍ2

c2 + 6 ÈNÍ3
c3 + ÈNÍ4

c4 (23)

and analogously for K5 and K6.

Finally we should point out that direct relation between correlation functions and cumulants can not be established
if one considers for example net-proton cumulants. In this case the additional knowledge of various factorial moments
is required. The relevant formulas are given in the Appendix

A. Comments

Before we analyze the existing data several comments are warranted.
(i) First it would be interesting to see how couplings scale with multiplicity if the correlations originate from several

independent sources of correlations. Suppose we have Ns sources of particles, each characterized by the multiplicity
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Significant four particle correlations! 

Four particle correlation dominate K4  
for central collisions at 7.7 GeV 

Based on prelim. STAR data
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energies above 19.6 GeV, the values of v2
3{2} linearly increase with the log(psNN ) for all of the four centralities.

Figure 5 right shows psNN dependence of the v2
3{2} scaled by the charged particle multiplicity per participant pair

nch,PP =
2

Npart
dNch/d⌘ for three centralities. Experimentally, the nch,PP has been measured and monotonically increase

with psNN [23], which can be related to the energy density of the system. The v2
3{2}/nch,PP shows a local minimum

around 20 GeV, which is the consequence of a relatively flat trend for v2
3{2} and monotonically increasing trend for the

nch,PP in the energy range 7.7 <psNN< 20 GeV. Physics wise, the v2
3{2}/nch,PP should reflect the ability of the system

to convert the initial geometry fluctuations to the final state. Thus, the local minimum in v2
3{2}/nch,PP could indicate

an anomalous low pressure inside the matter created in the collisions near psNN=20 GeV, where a minimum is also
observed for the slope of net-proton directed flow. Apparently, these observations can be interpreted by softening of
equation-of-state due to presence of the first order phase transition. However, conclusions only can be made after
carrying out careful theoretical and model studies for the dynamical evolution of the system including the physics of
first order phase transition at finite µB.

2.5. Net-proton number fluctuations
Fluctuations of conserved quantities, such as baryon (B), charge (Q) and strangeness (S) numbers, have been

proposed as a sensitive probe to search for the signature of the QCD critical point in heavy-ion collisions [24]. These
fluctuations are sensitive to the correlation length (⇠) [24] and can be directly connected to the susceptibility of the
system computed in theoretical calculations, such as Lattice QCD [25, 26, 27] and HRG models [28]. The STAR
experiment has measured various order fluctuations of net-proton (Np � Np̄, proxy for net-baryon), net-charge and
net-kaon (proxy for net-strangeness) numbers in the Au+Au collisons at psNN=7.7, 11.5, 14.5, 19.6, 27, 39, 62.4 and
200 GeV [29, 30, 31].
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Figure 6. (Color online) Left: Energy dependence of �2 of net-proton distributions and Middle: S� divided by Skellam (Poisson) expeca-
tions for 0-5%, 5-10% and 70-80% centralities of Au+Au collisions at psNN=7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, 200 GeV measured by STAR.
The experimental data is compared with Poisson expectations (dashed lines) and the UrQMD transport model calculations (shade bands ). The
statistic and systematic errors are plotted as vertical bar and brackets, respectively. Right: A schematic sketch for theoretically predicted neg-
ative(red)/positive(blue) critical contribution regions for �2 near the QCD critical point and possible chemical freeze-out regions for Au+Au
collisions 14.5 (green), 16.5 (purple) and 19.6 GeV (black).

Figure 6 left shows the e�ciency corrected �2 of net-proton distributions as a function of psNN for 0-5%, 5-10%
and 70-80% centralities of Au+Au collisions measured by STAR [31, 32]. The protons and anti-protons numbers
are measured with transverse momentum 0.4 < pT < 2 GeV/c and at mid-rapidity |y| < 0.5. The �2 shows a clear
non-monotonic variation with psNN for 0-5% centrality with a minimum around 20 GeV. Above 39 GeV, the values of
�2 are close to the unity for both central and peripheral collisions and deviate significantly below unity for the 0-5%
most central collisions at 19.6 and 27 GeV, then become above unity at 0-5% centrality in the energies below 19.6
GeV. Another intriguing structure observed in psNN dependence for the �2 of net-proton distributions in Au+Au
collisons is the so called ”Oscillation”. Namely, the oscillation is a structure that represents two observations, the so

6

Dip at 19.6 GeV from  
NEGATIVE C2 !

Based on prelim. STAR data

Based on prelim. STAR data
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Note: anti-protons are non- negligible above 19.6 GeV

Based on prelim. STAR data
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short range correlations:

Assume:

Long range correlations:

ck(y1, . . . , yk) � �(y1 � y2) . . . �(yk�1 � yk)

� Kn = Kn (�N�)
Ck(�Y ) � (�Y )k � �N�k
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3

where ”N = N ≠ ÈNÍ. Formulas for the higher order cumulants can be found in Ref. [XXX].
Now we can relate the cumulants in terms of the correlation functions and the mean particle number ÈNÍ = F1

K2 = F1 + C2, (11)
K3 = F1 + 3C2 + C3, (12)
K4 = F1 + 7C2 + 6C3 + C4, (13)

and vice versa,with K1 = F1 = ÈNÍ

C2 = ≠K1 + K2, (14)
C3 = 2K1 ≠ 3K2 + K3, (15)
C4 = ≠6K1 + 11K2 ≠ 6K3 + K4, . (16)

Before we apply the above equations to extract the correlation strength from the STAR data, let us make a few
more remarks concerning these correlation functions.

Frequently in the literature, one refers to correlation function where the trivial dependence on the particle den-
sity/multiplicity is removed

cn (y1, ..., yn) = Cn (y1, ..., yn)
fl1 (y1) · · · fl1 (yn) , (17)

which we shall refer to as reduced correlation functions or simply couplings. For example in terms of the reduced
correlation functions the two particle density would be given as

fl2 (y1, y2) = fl1 (y1) fl2 (y2) [1 + c2 (y1, y2)] . (18)

The advantage of the reduced correlation functions is that they are directly sensitive to the dynamics, and should
remain constant if the only change is that of the particle abundances. This will prove helpful when studying for
instance the centrality dependence of the correlations.

Also, the correlation functions Cn are often referred to as “factorial cumulants” [7]
Integrating over rapidity we obtain

Ck = ÈNÍk
ck (19)

where ÈNÍ =
´

�Y dN/dy depends on the rapidity interval �Y and we denote

ck =
´

fl1 (y1) · · · fl1 (yk) ck (y1, ..., yk) dy1 · · · dyk´
fl1 (y1) · · · fl1 (yk) dy1 · · · dyk

. (20)

Using above definition we can write

K2 = ÈNÍ + ÈNÍ2
c2 (21)

K3 = ÈNÍ + 3 ÈNÍ2
c2 + ÈNÍ3

c3 (22)
K4 = ÈNÍ + 7 ÈNÍ2

c2 + 6 ÈNÍ3
c3 + ÈNÍ4

c4 (23)

and analogously for K5 and K6.

Finally we should point out that direct relation between correlation functions and cumulants can not be established
if one considers for example net-proton cumulants. In this case the additional knowledge of various factorial moments
is required. The relevant formulas are given in the Appendix

A. Comments

Before we analyze the existing data several comments are warranted.
(i) First it would be interesting to see how couplings scale with multiplicity if the correlations originate from several

independent sources of correlations. Suppose we have Ns sources of particles, each characterized by the multiplicity

ck = const. � Kn = Kn (�N�)
ADAM BZDAK AND VOLKER KOCH PHYSICAL REVIEW C 96, 054905 (2017)

FIG. 1. The cumulant ratio K4/K2 in central 0–5% Au +
Au collisions at

√
s = 7.7 GeV as a function of the number of

measured protons ⟨N⟩ for different acceptance windows in rapidity
and transverse momentum (in units of GeV). For all data points
pt > 0.4 GeV. The black solid line represents a prediction based
on a constant correlation function, see Eq. (17). The shaded band is
driven mostly by the large experimental uncertainty of K4. Based on
the preliminary STAR Collaboration data [42].

the couplings cn do not depend on rapidity and transverse
momentum either as can be seen from Eq. (8),

cn = c0
n. (18)

The multiparticle integrated correlation functions Cn =
⟨N⟩ncn and cumulants Kn, in turn, depend on the acceptance
only through their dependence on the number of protons ⟨N⟩,
see Eqs. (9)–(11). Therefore, in Fig. 1 we plot K4/K2 as
measured by the STAR Collaboration as a function of ⟨N⟩
for different rapidity and transverse momentum intervals.

The black solid line in Fig. 1 represents a prediction
based on a constant correlation function. In this calculation
we have three unknown parameters c0

2, c0
3, and c0

4. Since
these numbers do not depend on acceptance, we determine
them from the preliminary data for |y | < 0.5 (!y = 1) and
0.4 < pt < 2 GeV, that is, from the maximal acceptance
currently available. Here we use Eqs. (9)–(11) and the values
for ⟨N⟩, K2, K3, and K4 shown in Ref. [42].4 To determine
⟨N⟩ at a given acceptance region we assume the single-proton
rapidity distribution to be flat as a function of rapidity, i.e.,
⟨N⟩ = ⟨N!y =1⟩!y , and, for the transverse momentum single-
proton distribution, we take ρ(pt ) ∼ pt exp(− mt/T ) with
T = 0.27 GeV and mt = (m2 + p2

t )1/2 with m = 0.94 GeV.
Both these assumptions are well supported by experimental
data [52,53]. Having c0

n, we can predict the cumulants
or the correlation functions for any acceptance charac-

4We determine c0
n from the proton cumulants but compare to y and

pt dependences of the net-proton cumulants, which are the only data
currently available. Although at 7.7 GeV the number of antiprotons is
practically negligible, it results in a slight disagreement of the black
solid line with the blue star in Fig. 1.

terized by ⟨N⟩ whether in transverse momentum or in
rapidity.5

Interestingly we find that, except for one point at |y | < 0.5
and 0.4 < pt < 1.2 GeV, all the points follow within the
admittedly large experimental error bars one universal curve
consistent with a constant correlation function. The fact that the
rapidity dependence of the cumulant ratio K4/K2 is consistent
with long-range rapidity correlations already has been found
in Ref. [40]. That the transverse momentum dependence is
also consistent with long-range correlations is new. If correct,
it would, for example, imply that the cumulant ratio K4/K2
has roughly the same value (close to unity) for a transverse
momentum range of 0.8 GeV < pt < 2 GeV as the value
for the range of 0.4 GeV < pt < 0.8 GeV since, in both pt

windows, ⟨N⟩ is approximately the same. The result for the
pt range of 0.4 GeV < pt < 0.8 GeV has been published by
the STAR Collaboration in Ref. [5].

Of course, the error bars in the preliminary STAR Col-
laboration data are rather sizable and, therefore, a mild
dependence of the correlation function on rapidity (and
transverse momentum) cannot be ruled out. In addition, as
already mentioned in the Introduction, the preliminary, explicit
measurement of the two-proton correlation function [45,46]
does exhibit an increase with increasing rapidity difference of
a proton pair y 1 − y 2. To explore this further we next will allow
for some mild rapidity dependence of the correlation function.

B. Rapidity-dependent correlation

In the previous subsection we demonstrated that the STAR
Collaboration data for K4/K2 at 7.7 GeV are consistent with
a constant multiproton correlation function. Here we study
how sensitive the cumulant ratios and correlations are to a
certain (weak) rapidity dependence. To this end we consider
the leading correction to a constant correlation function, which
should be even in y i − y k . Thus we explore the following
Ansätze for the reduced correlation functions,

c2(y 1,y 2) = c0
2 + γ2(y 1 − y 2)2,

c3(y 1,y 2,y 3) = c0
3 + γ3

1
3 [(y 1 − y 2)2 + (y 1 − y 3)2

+ (y 2 − y 3)2],

c4(y 1,y 2,y 3,y 4) = c0
4 + γ4

1
6 [(y 1 − y 2)2 + (y 1 − y 3)2

+ (y 1 − y 4)2 + (y 2 − y 3)2

+ (y 2 − y 4)2 + (y 3 − y 4)2], (19)

where γn measures the deviation from cn(y 1, . . . ,y n) = const.
Note that we have constructed the correlation function such
that positive values of γn result in growing correlations with
rapidity separation between particles. We further note that the
above form for the two-proton reduced correlation function
c2(y 1,y 2) is supported by the preliminary STAR Collaboration
data [45,46] where γ2 > 0, that is, two protons do not want

5Based on the preliminary STAR Collaboration data for the
cumulants [42] we obtain c0

2 ≈ − 1.1 × 10− 3, c0
3 ≈ − 1.7 × 10− 4, and

c0
4 ≈ 7.3 × 10− 5.

054905-4

Published Data

Preliminary Data
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• Two particle correlations can be understood by simple 
Glauber model + Baryon number conservation

72

6

where b = 40 for
p
s = 7.7 GeV. Our conclusions are not sensitive to small variations of b and changing the exponent

from 1.25 to 1. The results are presented in Fig. 3 by the solid curves. The dashed curves correspond to calculations
without volume (Npart) fluctuations (no VF). The symbols represent the correlations after averaging over bins in
centrality of 5%, i.e. 0 � 5%, 5 � 10% etc. Only the five most central points are shown. For less central collisions,
the centrality averaging does not alter our results and points fall right on the solid lines. Clearly, the contribution
originating from Npart fluctuations is important for the two particle correlation, C2; there is also some but less
significant e↵ect of Npart fluctuations on the three particle correlation C3 in central collisions. On the other hand,
when compared to the STAR data, fluctuations of wounded nucleons are all but irrelevant for the four particle
correlation, C4. In our model calculation, C4 is negative for o↵-central collisions and it gets positive for large Npart.
After averaging over centrality bins, the model predicts around �0.3 for C4 while the analysis of the preliminary
STAR data gives ⇠ 170. Also, as already mentioned, the strong oscillations exhibited in C3 and C4 at large Npart

disappear after averaging over centrality bins. Obviously our model of independent stopping together with baryon
number conservation clearly fails to explain the preliminary STAR data, reported in Ref. [51] (see Fig. 1 therein).

FIG. 3. Multi-particle correlations Cn in Au+Au collisions at
p
s = 7.7 GeV. The leading terms, where fluctuations of the

number of wounded nucleons are not present, are denoted by “no VF”. Also shown as circles, triangles and squares are the
results for the five most central bins with a width of 5% of centrality.

Before we close this section, let us make a few more remarks. First, the results without the number of wounded
nucleon fluctuations presented in this section can be verified analytically. At a fixed Npart, Eq. (9) reduces to

H(z;Npart) = (1� p+ pz)Npart , (20)

and using Eq. (3) we obtain

C2 = �p
2
Npart, C3 = 2p3Npart, C4 = �6p4Npart. (21)

Since p < 1 this explains the relative magnitude of the correlation functions. Next, in our analysis we assumed that
each nucleon is stopped in �y with the same probability p. This is rather unphysical since nucleons that collide
once are expected to have significantly smaller p than nucleon from the centers which collide several times. However,
as long as we have independent stopping of the nucleons, individual stopping probabilities do not really change
our conclusions. Suppose that each nucleon is characterized by its own stopping probability, p(i), i = 1, ..., Npart.
Neglecting Npart fluctuations we obtain at a given Npart

5

H(z;Npart) =
YNpart

i=1
(1� p(i) + p(i)z), (22)

which obviously reduces to Eq. (20) if pi = p. Calculating Ck we observe that it is enough to replace Npartp
n !

P
i
p
n

(i)

in Eq. (21) and thus the signs of Ck do not change. We conclude that this e↵ect cannot lead to a large and positive
C4 as seen in the STAR data.

The corollary of this section is the following. The two-particle correlations obtained in our model of independent
nucleon stopping together with baryon-number conservation and fast isospin equilibration are of the same magnitude

5
The generating function of independent sources is given by a product of its generating functions.

Based on prelim. STAR data

Data
Model

Four particle correlations are orders of magnitudes larger in the data 
Also seen in URQMD calculations by He et al. PLB774 (2017) 623

Need to assume the ~40% of protons come from 8-nucleon cluster 
in order to get magnitude right!
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628 S. He, X. Luo / Physics Letters B 774 (2017) 623–629

Fig. 7. The same as Fig. 6 and just replace the X-axis with the corresponding mean proton number (⟨Np⟩).

Fig. 8. Energy dependence of proton (baryon) cumulants and correlation functions in 0–5% most central Au+Au collisions at √sNN = 7.7 to 200 GeV from UrQMD model 
(black circles) and STAR preliminary data (red stars) [15,37,56]. (For interpretation of the references to color in this figure legend, the reader is referred to the web version 
of this article.)

To understand the contributions to the cumulants from differ-
ent physics effects, we decompose the various order cumulants 
into multi-particle correlation functions based on the equations (2)
and (3). It means that each cumulant in the first column is just 
equal to the sum of the results in the second and the third 
columns. It is easily noticed that the strong suppression observed 

in various order proton (baryon) cumulants from UrQMD at low 
energies are mainly caused by the negative two-proton correlation 
functions (c2), which is due to the anti-correlation between pro-
ton (baryon) caused by the BNC effects. The results for the three 
and four-particle correlation functions for protons (baryons) in the 
UrQMD model show a flat energy dependence and close to zero. 

He, Luo PLB774 (2017) 623
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energies above 19.6 GeV, the values of v2
3{2} linearly increase with the log(psNN ) for all of the four centralities.

Figure 5 right shows psNN dependence of the v2
3{2} scaled by the charged particle multiplicity per participant pair

nch,PP =
2

Npart
dNch/d⌘ for three centralities. Experimentally, the nch,PP has been measured and monotonically increase

with psNN [23], which can be related to the energy density of the system. The v2
3{2}/nch,PP shows a local minimum

around 20 GeV, which is the consequence of a relatively flat trend for v2
3{2} and monotonically increasing trend for the

nch,PP in the energy range 7.7 <psNN< 20 GeV. Physics wise, the v2
3{2}/nch,PP should reflect the ability of the system

to convert the initial geometry fluctuations to the final state. Thus, the local minimum in v2
3{2}/nch,PP could indicate

an anomalous low pressure inside the matter created in the collisions near psNN=20 GeV, where a minimum is also
observed for the slope of net-proton directed flow. Apparently, these observations can be interpreted by softening of
equation-of-state due to presence of the first order phase transition. However, conclusions only can be made after
carrying out careful theoretical and model studies for the dynamical evolution of the system including the physics of
first order phase transition at finite µB.

2.5. Net-proton number fluctuations
Fluctuations of conserved quantities, such as baryon (B), charge (Q) and strangeness (S) numbers, have been

proposed as a sensitive probe to search for the signature of the QCD critical point in heavy-ion collisions [24]. These
fluctuations are sensitive to the correlation length (⇠) [24] and can be directly connected to the susceptibility of the
system computed in theoretical calculations, such as Lattice QCD [25, 26, 27] and HRG models [28]. The STAR
experiment has measured various order fluctuations of net-proton (Np � Np̄, proxy for net-baryon), net-charge and
net-kaon (proxy for net-strangeness) numbers in the Au+Au collisons at psNN=7.7, 11.5, 14.5, 19.6, 27, 39, 62.4 and
200 GeV [29, 30, 31].
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Figure 6. (Color online) Left: Energy dependence of �2 of net-proton distributions and Middle: S� divided by Skellam (Poisson) expeca-
tions for 0-5%, 5-10% and 70-80% centralities of Au+Au collisions at psNN=7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, 200 GeV measured by STAR.
The experimental data is compared with Poisson expectations (dashed lines) and the UrQMD transport model calculations (shade bands ). The
statistic and systematic errors are plotted as vertical bar and brackets, respectively. Right: A schematic sketch for theoretically predicted neg-
ative(red)/positive(blue) critical contribution regions for �2 near the QCD critical point and possible chemical freeze-out regions for Au+Au
collisions 14.5 (green), 16.5 (purple) and 19.6 GeV (black).

Figure 6 left shows the e�ciency corrected �2 of net-proton distributions as a function of psNN for 0-5%, 5-10%
and 70-80% centralities of Au+Au collisions measured by STAR [31, 32]. The protons and anti-protons numbers
are measured with transverse momentum 0.4 < pT < 2 GeV/c and at mid-rapidity |y| < 0.5. The �2 shows a clear
non-monotonic variation with psNN for 0-5% centrality with a minimum around 20 GeV. Above 39 GeV, the values of
�2 are close to the unity for both central and peripheral collisions and deviate significantly below unity for the 0-5%
most central collisions at 19.6 and 27 GeV, then become above unity at 0-5% centrality in the energies below 19.6
GeV. Another intriguing structure observed in psNN dependence for the �2 of net-proton distributions in Au+Au
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energies above 19.6 GeV, the values of v2
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3{2} scaled by the charged particle multiplicity per participant pair

nch,PP =
2

Npart
dNch/d⌘ for three centralities. Experimentally, the nch,PP has been measured and monotonically increase

with psNN [23], which can be related to the energy density of the system. The v2
3{2}/nch,PP shows a local minimum

around 20 GeV, which is the consequence of a relatively flat trend for v2
3{2} and monotonically increasing trend for the

nch,PP in the energy range 7.7 <psNN< 20 GeV. Physics wise, the v2
3{2}/nch,PP should reflect the ability of the system

to convert the initial geometry fluctuations to the final state. Thus, the local minimum in v2
3{2}/nch,PP could indicate

an anomalous low pressure inside the matter created in the collisions near psNN=20 GeV, where a minimum is also
observed for the slope of net-proton directed flow. Apparently, these observations can be interpreted by softening of
equation-of-state due to presence of the first order phase transition. However, conclusions only can be made after
carrying out careful theoretical and model studies for the dynamical evolution of the system including the physics of
first order phase transition at finite µB.

2.5. Net-proton number fluctuations
Fluctuations of conserved quantities, such as baryon (B), charge (Q) and strangeness (S) numbers, have been

proposed as a sensitive probe to search for the signature of the QCD critical point in heavy-ion collisions [24]. These
fluctuations are sensitive to the correlation length (⇠) [24] and can be directly connected to the susceptibility of the
system computed in theoretical calculations, such as Lattice QCD [25, 26, 27] and HRG models [28]. The STAR
experiment has measured various order fluctuations of net-proton (Np � Np̄, proxy for net-baryon), net-charge and
net-kaon (proxy for net-strangeness) numbers in the Au+Au collisons at psNN=7.7, 11.5, 14.5, 19.6, 27, 39, 62.4 and
200 GeV [29, 30, 31].

 (GeV)NNs
6 10 20 100 200

2
σ κ

0

1

2

3

4 <2 (GeV/c),|y|<0.5
T

0.4<p

0-5%
5-10%
70-80%

UrQMD, 0-5%

Au+Au : Net-proton

STAR Preliminary

Au+Au : 0-5%

Net-proton

<2 (GeV/c),|y|<0.5
T

0.4<p

STAR data

AMPT

UrQMD

 (GeV)NNs
6 10 20 100 200

0.6

0.8

1.0

1.2

<2 (GeV/c),|y|<0.5
T

0.4<p

0-5%

5-10%

70-80%

/S
ke

lla
m

σ
S 

0-5%
5-10%
70-80%

UrQMD, 0-5%

Au+Au : Net-proton
<2 (GeV/c),|y|<0.5

T
0.4<p

STAR Preliminary

Au+Au : 0-5%

Net-proton

<2 (GeV/c),|y|<0.5
T

0.4<p

STAR data

AMPT

UrQMD

16.5 GeV

Figure 6. (Color online) Left: Energy dependence of �2 of net-proton distributions and Middle: S� divided by Skellam (Poisson) expeca-
tions for 0-5%, 5-10% and 70-80% centralities of Au+Au collisions at psNN=7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, 200 GeV measured by STAR.
The experimental data is compared with Poisson expectations (dashed lines) and the UrQMD transport model calculations (shade bands ). The
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ative(red)/positive(blue) critical contribution regions for �2 near the QCD critical point and possible chemical freeze-out regions for Au+Au
collisions 14.5 (green), 16.5 (purple) and 19.6 GeV (black).

Figure 6 left shows the e�ciency corrected �2 of net-proton distributions as a function of psNN for 0-5%, 5-10%
and 70-80% centralities of Au+Au collisions measured by STAR [31, 32]. The protons and anti-protons numbers
are measured with transverse momentum 0.4 < pT < 2 GeV/c and at mid-rapidity |y| < 0.5. The �2 shows a clear
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most central collisions at 19.6 and 27 GeV, then become above unity at 0-5% centrality in the energies below 19.6
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FIG. 1. The multiplicity distribution P (N) at
p
s = 7.7 GeV in the two component model given by Eq. 1

constructed with (a) e�ciency unfolded values for hNi, C3 and C4 and (b) with imposed e�ciency of 0.65.

and the cumulant
5
ratios read (CHECK PLEASE) (VK: I get for the

Cumulants {K1 . . .K6 = {40., 36.15, 18.45, 123.05,�1212.75, 11295.7} So I get K5/K2 ⇡ �34
K6/K2 ⇡ �312. I am happy to round this but then we should do this also in the

footnote where we explore the error ranger. Coe�cients in footnote are correct )

K5/K2 ⇡ �30,

K6/K2 ⇡ 300. (15)

It is worth noting that C6/C5 ⇡ C5/C4 ⇡ C4/C3 in agreement with the discussion presented in the
previous Section. We note that the resulting C2 ⇡ �3.85 is slightly more negative than the data.
However, as pointed out, e.g., in [45], the second order factorial cumulant receives sizable positive
contribution from participant fluctuations �C2 ' 2 � 3 whereas the correction to C3 and C4 are
small. In view of the sizable errors in the preliminary STAR data we consider the present fit as
satisfactory.

The resulting probability distribution, P (N), Eq. (1), is shown in the left panel of Fig. 1. Even
though the component centered at N ⇠ 25 has a very small probability ↵ ⇠ 0.3% it gives rise
to a shoulder at low N which should be visible in the multiplicity distribution. However, this
would require an unfolding of the measured distribution [27] in order to remove the e↵ect of a
finite detection e�ciency. Assuming a binomial model for the e�ciency with a constant detection
probability of ✏ = 0.65, which roughly corresponds to that of the STAR measurement, the observed
multiplicity distribution of the two component model is shown in the right panel of Fig. 1. In this
case the small component ⇠ ↵ is barely visible. This observation is consistent with the fact that
the e�ciency uncorrected cumulants measured by STAR are more or less consistent with a Poisson
(or binomial to be more precise) expectation.

(VK: why not the centrality dependence? ) I think we should add a few

sentences about centrality but we need to be careful about this

sudden jump of C3 in 5-10%. The STAR data is not really good

for a quantitative discussion... (VK: Maybe we can just mumble about the

fact that C3 is already very small at larger centrality and thus the whole approach is

questionable...? )

5 K2 = hNi + C2, K5 = hNi + 15C2 + 25C3 + 10C4 + C5 and K6 = hNi +
31C2 + 90C3 + 65C4 + 15C5 + C6.
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after 10-20 fm/c). These features a↵ect possible signals of a phase transition. For example, there
may not be su�cient time for the correlation length to grow significantly near the critical point or
for nucleation, which is also a comparatively slow process, to occur. On the other hand phenom-
ena like spinodal decomposition, i.e., the rapid phase separation due to instabilities at the phase
transition, can occur leading to an increase in density fluctuations. Further complications arise
from the fact that the system is relatively small and therefore e↵ects of the global conservation
of the various conserved charges cannot be neglected. In addition, as the system rapidly drops
out of equilibrium, other e↵ects like resonance decays, thermal smearing as well as experimental
acceptance and e�ciency corrections may blur the signal [26–38].

Published data on the net-proton number fluctuations (which, with reasonable model assump-
tions, can be related to the net-baryon fluctuations [39, 40]) only exist from the STAR collaboration
[38] and for a limited acceptance. The published data (|y| < 0.5 and 0.4 < pt < 0.8 GeV) are
consistent with uncorrelated proton production and the trivial correlations from global baron con-
servation [31]. On the other hand preliminary data from the STAR collaborations with a larger
acceptance (0.4 < pt < 2 GeV) [41, 42] show a significant deviation from uncorrelated proton pro-
duction for collision energies

p
s  11GeV. The preliminary data consistently show an increase of

the fourth order cumulant and a decrease of the third order cumulant with respect to uncorrelated
production. The experiments provide the measured cumulants of the net-proton number distribu-
tions and not the actual multi-particle correlation functions. However, the integrated n-particle
correlation functions (factorial cumulants) can be extracted from the measured cumulants [43]
and they indeed show an interesting beam energy dependence. In particular, the integrated four
particle correlations at the lowest beam energy accessible to STAR,

p
s = 7.7GeV are very large,

about three orders of magnitude larger than a basic Glauber model (incorporating the number
of wounded nucleons [44] fluctuations) combined with baryon number conservation would predict
[45]. The challenge now is to unambiguously connect the measured correlations to physical e↵ects
from a critical point or first order phase transition.

In this paper we will investigate how one can construct the underlying proton multiplicity
distribution functions only from the measured cumulants and discuss possible physics implications
from our findings. Especially we will explore whether one can construct a multiplicity distribution
with large factorial cumulants (as measured by STAR) or integrated correlation functions from the
superposition of two multiplicity distributions characterized by small factorial cumulants.

We will assume that the multiplicity distribution is obtained as a result of up to two independent
distributions where only one distribution contributes, with a certain probability, to the proton
multiplicity of a single event. Then we will discuss the measured factorial cumulants from the STAR
experiment in the context of our constructed multiplicity distributions. Possible interpretations
in terms of phase transition physics and ’non-physics’ background will be given. Furthermore
we will propose further experimental studies which will help to better understand the origin of
experimentally measured large correlations.

II. TWO EVENTS CLASSES

Let us consider the situation where we have two di↵erent types (or classes) of events, denoted
by (a) and (b). Let us denote the probability that an event belongs to class (a) by (1� ↵) and to
class (b) by ↵ with ↵  1. In this case the probability to find N particles or protons is given by

P (N) = (1� ↵)P(a)(N) + ↵P(b)(N), (1)

where P(a)(N) and P(b)(N) are multiplicity distributions governing the event classes (a) and (b)
respectively. As we shall show, the combined distribution, Eq. (1), can exhibit very large factorial

3

cumulants (integrated correlation functions) even if neither P(a) nor P(b) exhibit any correlations,
as would be the case if they were Poissonian. Such a situation can arise for example if in a heavy
ion experiment the centrality selection, for whatever reasons includes, not only central events but
also very peripheral events. It may also occur in case of a first order phase transition for a small
system as we shall discuss in the last section (VK: Still not entirely sure if this is the case...

)

In order to calculate the factorial cumulants it is best to start with the generating function:

H(z) =
X

P (N)zN

= (1� ↵)H(a)(z) + ↵H(b)(z). (2)

where H(a),(b) is the generating function for P(a),(b). The factorial cumulant generating function is
then given by

G(z) = ln [H(z)]

= ln[(1� ↵)H(a)(z) + ↵H(b)(z)]

= ln
h
(1� ↵)eln[H(a)(z)] + ↵e

ln[H(b)(z)]
i

= ln
h
(1� ↵)eG(a)(z) + ↵e

G(b)(z)
i
, (3)

so that the factorial cumulants read

Ck =
d
k

dzk
G(z)

����
z=1

, (4)

and analogously for C(a)
k

= d
k

dzk
G(a)(z)|z=1 and C

(b)
k

= d
k

dzk
G(b)(z)|z=1.

Given the distribution Eq. (1), the mean number of protons is

hNi = (1� ↵)
⌦
N(a)

↵
+ ↵

⌦
N(b)

↵
, (5)

with
⌦
N(a),(b)

↵
=
P

N
NP(a),(b)(N) is the average particle numbers for distributions P(a)(N) and

P(b)(N), respectively. To simplify the notation we further introduce

N =
⌦
N(a)

↵
�
⌦
N(b)

↵
,

Cn = C
(a)
n � C

(b)
n , (6)

and performing straightforward calculations we obtain1

C2 =C
(a)
2 � ↵

�
C2 � (1� ↵)N2

 

C3 =C
(a)
3 � ↵

�
C3 + (1� ↵)

⇥
(1� 2↵)N3 � 3NC2

⇤ 

C4 =C
(a)
4 � ↵

�
C4 � (1� ↵)

⇥�
1� 6↵+ 6↵2

�
N

4 � 6(1� 2↵)N2
C2 + 4NC3 + 3(C2)

2
⇤ 

(7)

Our goal is to obtain large factorial cumulants Cn from ordinary multiplicity distributions

characterized by small factorial cumulants, namely C
(a)
n ⌧ Cn and C

(b)
n ⌧ Cn. This is motivated

by a surprisingly large three- and four-proton factorial cumulants, C3 and C4, measured in central
Au+Au collisions at

p
s = 7.7 GeV, which are much larger than simple expectations from baryon

conservation or Npart fluctuation. The ultimate case where this holds is when the two classes are

1
The formulas for higher orders are given in the Appendix A.
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after 10-20 fm/c). These features a↵ect possible signals of a phase transition. For example, there
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acceptance and e�ciency corrections may blur the signal [26–38].

Published data on the net-proton number fluctuations (which, with reasonable model assump-
tions, can be related to the net-baryon fluctuations [39, 40]) only exist from the STAR collaboration
[38] and for a limited acceptance. The published data (|y| < 0.5 and 0.4 < pt < 0.8 GeV) are
consistent with uncorrelated proton production and the trivial correlations from global baron con-
servation [31]. On the other hand preliminary data from the STAR collaborations with a larger
acceptance (0.4 < pt < 2 GeV) [41, 42] show a significant deviation from uncorrelated proton pro-
duction for collision energies

p
s  11GeV. The preliminary data consistently show an increase of

the fourth order cumulant and a decrease of the third order cumulant with respect to uncorrelated
production. The experiments provide the measured cumulants of the net-proton number distribu-
tions and not the actual multi-particle correlation functions. However, the integrated n-particle
correlation functions (factorial cumulants) can be extracted from the measured cumulants [43]
and they indeed show an interesting beam energy dependence. In particular, the integrated four
particle correlations at the lowest beam energy accessible to STAR,

p
s = 7.7GeV are very large,

about three orders of magnitude larger than a basic Glauber model (incorporating the number
of wounded nucleons [44] fluctuations) combined with baryon number conservation would predict
[45]. The challenge now is to unambiguously connect the measured correlations to physical e↵ects
from a critical point or first order phase transition.

In this paper we will investigate how one can construct the underlying proton multiplicity
distribution functions only from the measured cumulants and discuss possible physics implications
from our findings. Especially we will explore whether one can construct a multiplicity distribution
with large factorial cumulants (as measured by STAR) or integrated correlation functions from the
superposition of two multiplicity distributions characterized by small factorial cumulants.

We will assume that the multiplicity distribution is obtained as a result of up to two independent
distributions where only one distribution contributes, with a certain probability, to the proton
multiplicity of a single event. Then we will discuss the measured factorial cumulants from the STAR
experiment in the context of our constructed multiplicity distributions. Possible interpretations
in terms of phase transition physics and ’non-physics’ background will be given. Furthermore
we will propose further experimental studies which will help to better understand the origin of
experimentally measured large correlations.

II. TWO EVENTS CLASSES

Let us consider the situation where we have two di↵erent types (or classes) of events, denoted
by (a) and (b). Let us denote the probability that an event belongs to class (a) by (1� ↵) and to
class (b) by ↵ with ↵  1. In this case the probability to find N particles or protons is given by

P (N) = (1� ↵)P(a)(N) + ↵P(b)(N), (1)

where P(a)(N) and P(b)(N) are multiplicity distributions governing the event classes (a) and (b)
respectively. As we shall show, the combined distribution, Eq. (1), can exhibit very large factorial

as seen by STAR ( i.e. “infinite” correlation length)

Clear and falsifiable prediction: 
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Based on 144393 events (same as STAR 0-5% at 7.7 GEV)

Model prediction:

3

FIG. 2. The relative error, �Cn/Cn, of factorial cumulant
for various proton multiplicity distributions based on 144393
events, as present in the most central Au + Au collisions
at RHIC. The presented here binomial and negative bino-
mial distributions are statistically very demanding, whereas
the distribution given by. Eq. (5) (Binomial+Poisson) with
hNi = 40, allows to successfully measure higher order facto-
rial cumulants with a relatively small number of events. This
feature is also present for the e�ciency uncorrected distribu-
tion (Binomial+Poisson+e�) where hNi = 40⇥ 0.65.

away from the tails. This is exactly the case of our su-
perposition model [29]. To be a bit more precise the
factorial cumulants of Eq. (5), assuming ↵ ⌧ 1 are given
by

Cn ⇡ C(a)
n + (�1)n↵Nn, (6)

where C(a)
n is a factorial cumulant characterizing P(a)(N)

and N = hN(a)i � hN(b)i. For C(a)
n being a Poisson or

binomial the values of Cn are completely dominated by
a term ↵Nn, which results in very large factorial cumu-
lants. The error, �Cn, on the other hand, is of the same

magnitude as that of the first term, �C(a)
n (in practice

�C(a)
n /�Cn ranges from ⇠ 0.95 for n = 2 to ⇠ 0.2 for

n = 9). Thus we have a situation, where the error of
the factorial cumulant is of the same magnitude as that
of a binomial distribution, but the factorial cumulant is
orders of magnitude larger. Consequently, and not sur-
prisingly, the relative error is much smaller for the two-
component distribution than for the binomial distribu-
tion.

Finally, we note that in the case of Eq. (5), the regular
cumulnats are less statistics friendly. This is presented in
Fig. 3. The reason for this is the same as just stated. The
absolute errors for both cumulants and factorial cumu-
lants are of the same magnitude, �Kn ⇠ �Cn. On the
other hand, for the two-component model, the factorial
cumulants are very large while the regular cumulants are
only modestly larger than that of a simple binomial dis-
tribution. This is a result of the alternating signs of the
factorial cumulants. For example, the sixth order cumu-
lant, K6, is given in terms of the factorial cumulants as

FIG. 3. The relative errors of the factorial cumulants,
�Cn/Cn, and the regular cumulants, �Kn/Kn, based on
144393 events sampled from a distribution given by Eq. (5).

K6 = hNi+31C2+90C3+65C4+15C5+C6 (see e.g., Ref.
[20]). And for our example of ”binomial+Poisson+e�”,
where we see a rapid increase in the relative error, we
have C6 ⇡ 3080, 15C5 ⇡ �4600 and 65C4 ⇡ 1970. As
a result, K6 ⇡ 180 ⌧ C6, and consequently the relative
error is much larger for K6 as compared to C6.
In summary, we demonstrated that for the multiplic-

ity distribution given by Eq. (5), which is relevant in
the context of searching for structures in the QCD phase
diagram, factorial cumulants of high orders can be deter-
mined with relatively small number of events. This is in
contrast to various statistics hungry distributions (Pois-
son, binomial, NBD, etc.), for which the error increases
nearly exponentially with increasing order. As shown in
Ref. [20], the distribution, Eq. (5), describes the prelim-
inary STAR data for proton cumulants (up to the forth
order) in central Au+Au collisions at

p
s = 7.7GeV.

Since this distribution is statistics friendly, it can be fur-
ther tested by evaluating the higher order factorial cu-
mulants even with the presently available STAR data set
of 144393 events for the most central collisions. We also
pointed out that factorial cumualnts are more statistics
friendly when compared to regular cumulants, which, in
the case of Eq. (5), results from a delicate cancellation of
large factorial cumulants. Assuming that C4 = 170 (as
extracted from a preliminary STAR data) we predict:

C5 = �307 (1± 0.31), C6 = 3085 (1± 0.41),

C7 = �30155 (1± 0.61), C8 = 271492 (1± 1.06),

for e�ciency uncorrected data and

C5 = �2645 (1± 0.14), C6 = 40900 (1± 0.18),

C7 = �615135 (1± 0.26), C8 = 8520220 (1± 0.42),

for hNi = 40, corresponding to the e�ciency corrected
data [30]. We note, that in the next phase of the RHIC
beam energy scan the statistics is expected to increase by
roughly a factor of ⇠ 25 [31] reducing the above errors
by about a factor of 5.

3

FIG. 2. The relative error, �Cn/Cn, of factorial cumulant
for various proton multiplicity distributions based on 144393
events, as present in the most central Au + Au collisions
at RHIC. The presented here binomial and negative bino-
mial distributions are statistically very demanding, whereas
the distribution given by. Eq. (5) (Binomial+Poisson) with
hNi = 40, allows to successfully measure higher order facto-
rial cumulants with a relatively small number of events. This
feature is also present for the e�ciency uncorrected distribu-
tion (Binomial+Poisson+e�) where hNi = 40⇥ 0.65.

away from the tails. This is exactly the case of our su-
perposition model [29]. To be a bit more precise the
factorial cumulants of Eq. (5), assuming ↵ ⌧ 1 are given
by

Cn ⇡ C(a)
n + (�1)n↵Nn, (6)

where C(a)
n is a factorial cumulant characterizing P(a)(N)

and N = hN(a)i � hN(b)i. For C(a)
n being a Poisson or

binomial the values of Cn are completely dominated by
a term ↵Nn, which results in very large factorial cumu-
lants. The error, �Cn, on the other hand, is of the same

magnitude as that of the first term, �C(a)
n (in practice

�C(a)
n /�Cn ranges from ⇠ 0.95 for n = 2 to ⇠ 0.2 for

n = 9). Thus we have a situation, where the error of
the factorial cumulant is of the same magnitude as that
of a binomial distribution, but the factorial cumulant is
orders of magnitude larger. Consequently, and not sur-
prisingly, the relative error is much smaller for the two-
component distribution than for the binomial distribu-
tion.

Finally, we note that in the case of Eq. (5), the regular
cumulnats are less statistics friendly. This is presented in
Fig. 3. The reason for this is the same as just stated. The
absolute errors for both cumulants and factorial cumu-
lants are of the same magnitude, �Kn ⇠ �Cn. On the
other hand, for the two-component model, the factorial
cumulants are very large while the regular cumulants are
only modestly larger than that of a simple binomial dis-
tribution. This is a result of the alternating signs of the
factorial cumulants. For example, the sixth order cumu-
lant, K6, is given in terms of the factorial cumulants as

FIG. 3. The relative errors of the factorial cumulants,
�Cn/Cn, and the regular cumulants, �Kn/Kn, based on
144393 events sampled from a distribution given by Eq. (5).

K6 = hNi+31C2+90C3+65C4+15C5+C6 (see e.g., Ref.
[20]). And for our example of ”binomial+Poisson+e�”,
where we see a rapid increase in the relative error, we
have C6 ⇡ 3080, 15C5 ⇡ �4600 and 65C4 ⇡ 1970. As
a result, K6 ⇡ 180 ⌧ C6, and consequently the relative
error is much larger for K6 as compared to C6.
In summary, we demonstrated that for the multiplic-

ity distribution given by Eq. (5), which is relevant in
the context of searching for structures in the QCD phase
diagram, factorial cumulants of high orders can be deter-
mined with relatively small number of events. This is in
contrast to various statistics hungry distributions (Pois-
son, binomial, NBD, etc.), for which the error increases
nearly exponentially with increasing order. As shown in
Ref. [20], the distribution, Eq. (5), describes the prelim-
inary STAR data for proton cumulants (up to the forth
order) in central Au+Au collisions at

p
s = 7.7GeV.

Since this distribution is statistics friendly, it can be fur-
ther tested by evaluating the higher order factorial cu-
mulants even with the presently available STAR data set
of 144393 events for the most central collisions. We also
pointed out that factorial cumualnts are more statistics
friendly when compared to regular cumulants, which, in
the case of Eq. (5), results from a delicate cancellation of
large factorial cumulants. Assuming that C4 = 170 (as
extracted from a preliminary STAR data) we predict:

C5 = �307 (1± 0.31), C6 = 3085 (1± 0.41),

C7 = �30155 (1± 0.61), C8 = 271492 (1± 1.06),

for e�ciency uncorrected data and

C5 = �2645 (1± 0.14), C6 = 40900 (1± 0.18),

C7 = �615135 (1± 0.26), C8 = 8520220 (1± 0.42),

for hNi = 40, corresponding to the e�ciency corrected
data [30]. We note, that in the next phase of the RHIC
beam energy scan the statistics is expected to increase by
roughly a factor of ⇠ 25 [31] reducing the above errors
by about a factor of 5.
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FIG. 3. Probability distribution at various points close to the co-existence line for the van der Waals model
for system at fixed volume: (T/Tc, µ/µc) = (1.02, 0.99) (a), (1.02, 1.004) (b), (0.98, 1.004) (c), (0.98, 1.0015)
(d), (0.95, 1.0062) (e). The model and parameters are described in the Appendix B.

factorial cumulants should increase leading to a probability distribution which should exhibit
a clear second event class which might even be visible without unfolding the data.

• The present STAR dataset for
p
s = 7.7 GeV contains 3 million events so that the most

central 5% correspond to 150k events [38]. Given ↵ ⇡ 0.0033 there are roughly 500 events
for N < 20 and it maybe worthwhile to inspect these events individually to see if there are
some systematic deviations or common experimental issues.

• It is noteworthy that two event classes distribution looks very similar to that of a system
close to a first order phase transition in a finite system. To illustrate this, we have used the
van der Waals model in a finite volume to calculate the multiplicity distributions for various
points near the co-existence line for a system of fixed volume (details are in the Appendix B).
This is shown in Fig. 3. The multiplicity distribution extracted from the STAR cumulants,
Fig. 1, looks qualitatively similar to the distribution to the right of the phase-coexistence
line in Fig. 3. In this case the “bump” at small N corresponds to events where the system
would be in the “dilute” phase whereas the large maximum at large N corresponds to the
events where the system is in the “dense” phase, which dominates the distribution. If we
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FIG. 1. The multiplicity distribution P (N) at
p
s = 7.7 GeV in the two component model given by Eq. 1

constructed with (a) e�ciency unfolded values for hNi, C3 and C4 and (b) with imposed e�ciency of 0.65.

and the cumulant
5
ratios read (CHECK PLEASE) (VK: I get for the

Cumulants {K1 . . .K6 = {40., 36.15, 18.45, 123.05,�1212.75, 11295.7} So I get K5/K2 ⇡ �34
K6/K2 ⇡ �312. I am happy to round this but then we should do this also in the

footnote where we explore the error ranger. Coe�cients in footnote are correct )

K5/K2 ⇡ �30,

K6/K2 ⇡ 300. (15)

It is worth noting that C6/C5 ⇡ C5/C4 ⇡ C4/C3 in agreement with the discussion presented in the
previous Section. We note that the resulting C2 ⇡ �3.85 is slightly more negative than the data.
However, as pointed out, e.g., in [45], the second order factorial cumulant receives sizable positive
contribution from participant fluctuations �C2 ' 2 � 3 whereas the correction to C3 and C4 are
small. In view of the sizable errors in the preliminary STAR data we consider the present fit as
satisfactory.

The resulting probability distribution, P (N), Eq. (1), is shown in the left panel of Fig. 1. Even
though the component centered at N ⇠ 25 has a very small probability ↵ ⇠ 0.3% it gives rise
to a shoulder at low N which should be visible in the multiplicity distribution. However, this
would require an unfolding of the measured distribution [27] in order to remove the e↵ect of a
finite detection e�ciency. Assuming a binomial model for the e�ciency with a constant detection
probability of ✏ = 0.65, which roughly corresponds to that of the STAR measurement, the observed
multiplicity distribution of the two component model is shown in the right panel of Fig. 1. In this
case the small component ⇠ ↵ is barely visible. This observation is consistent with the fact that
the e�ciency uncorrected cumulants measured by STAR are more or less consistent with a Poisson
(or binomial to be more precise) expectation.

(VK: why not the centrality dependence? ) I think we should add a few

sentences about centrality but we need to be careful about this

sudden jump of C3 in 5-10%. The STAR data is not really good

for a quantitative discussion... (VK: Maybe we can just mumble about the

fact that C3 is already very small at larger centrality and thus the whole approach is

questionable...? )

5 K2 = hNi + C2, K5 = hNi + 15C2 + 25C3 + 10C4 + C5 and K6 = hNi +
31C2 + 90C3 + 65C4 + 15C5 + C6.

Bzdak et al, arXiv:1804.04463
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FIG. 1. The multiplicity distribution P (N) at
p
s = 7.7 GeV in the two component model given by Eq. 1

constructed with (a) e�ciency unfolded values for hNi, C3 and C4 and (b) with imposed e�ciency of 0.65.

and the cumulant
5
ratios read (CHECK PLEASE) (VK: I get for the

Cumulants {K1 . . .K6 = {40., 36.15, 18.45, 123.05,�1212.75, 11295.7} So I get K5/K2 ⇡ �34
K6/K2 ⇡ �312. I am happy to round this but then we should do this also in the

footnote where we explore the error ranger. Coe�cients in footnote are correct )

K5/K2 ⇡ �30,

K6/K2 ⇡ 300. (15)

It is worth noting that C6/C5 ⇡ C5/C4 ⇡ C4/C3 in agreement with the discussion presented in the
previous Section. We note that the resulting C2 ⇡ �3.85 is slightly more negative than the data.
However, as pointed out, e.g., in [45], the second order factorial cumulant receives sizable positive
contribution from participant fluctuations �C2 ' 2 � 3 whereas the correction to C3 and C4 are
small. In view of the sizable errors in the preliminary STAR data we consider the present fit as
satisfactory.

The resulting probability distribution, P (N), Eq. (1), is shown in the left panel of Fig. 1. Even
though the component centered at N ⇠ 25 has a very small probability ↵ ⇠ 0.3% it gives rise
to a shoulder at low N which should be visible in the multiplicity distribution. However, this
would require an unfolding of the measured distribution [27] in order to remove the e↵ect of a
finite detection e�ciency. Assuming a binomial model for the e�ciency with a constant detection
probability of ✏ = 0.65, which roughly corresponds to that of the STAR measurement, the observed
multiplicity distribution of the two component model is shown in the right panel of Fig. 1. In this
case the small component ⇠ ↵ is barely visible. This observation is consistent with the fact that
the e�ciency uncorrected cumulants measured by STAR are more or less consistent with a Poisson
(or binomial to be more precise) expectation.

(VK: why not the centrality dependence? ) I think we should add a few

sentences about centrality but we need to be careful about this

sudden jump of C3 in 5-10%. The STAR data is not really good

for a quantitative discussion... (VK: Maybe we can just mumble about the

fact that C3 is already very small at larger centrality and thus the whole approach is

questionable...? )

5 K2 = hNi + C2, K5 = hNi + 15C2 + 25C3 + 10C4 + C5 and K6 = hNi +
31C2 + 90C3 + 65C4 + 15C5 + C6.

Simple two component model
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Analyse data for Np <20 
• Is flow etc different? 
• “Inspect by eye (<1% of all events) 
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Spinodal 
Region

System should spent long time 
in spinodal region

Spinodal instability: 
Mechanical instability

Exponential growth of clumping 

Non-equilibrium phenomenon!
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Phase-transition dynamics: Density clumping

With phase transition: Without phase transition: Density enhancement:

Evolution of density moments

Insert the modified pressure into existing 
ideal finite-density fluid dynamics code

Use UrQMD for pre-equilibrium stage 
to obtain fluctuating initial conditions

Simulate central Pb+Pb collisions at ≈3 GeV/A beam kinetic energy on fixed target, 
using an Equation of State either with a phase transition or without (Maxwell partner):

Phase  
transition 

Phase coexistence:  surface tension Introduce a gradient term:

Phase separation: instabilities
=>

J. Steinheimer & J. Randrup,  
 PRL 109, 212301(2012) 
 PRC 87, 054903 (2013)

ELab=3 GeV



Consider two Equations of State
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Steinheimer et al,  
Phys.Rev. C89 (2014) 034901
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PQM (“liquid-gas”) “QCD” 
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Time evolution

Higher pressure leads to faster evolution of “QCD” EoS.

Oscillation of nearly 
stable droplets for  
“liquid-gas” EoS

Steinheimer et al,  
Phys.Rev. C89 (2014) 034901



Cluster a.k.a. nuclei

Even if total baryon number does 
not fluctuate the baryon density does

Therefore measure production of NUCLEI: d, 3He, 4He, 7Li....

Extracts higher moments of the baryon density at freeze out

Nice Idea, but...  

�3He� � ��3� �7Li� � ��7��d� � ��2�
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“Cluster” formation

Clumping in coordinate space is compensated by dilution in  
momentum space  → tiny effect

“QCD” EoS

(SB)hadron− gas<(SB)QGP− liquid

Steinheimer et al,  
Phys.Rev. C89 (2014) 034901



“Deep” learning fails as well….
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Figure 6. Training and validation accuracy as function of the number of training epochs for
the fully connected neural network, training with event-by-event distributions of the momentum
di↵erence of baryon pairs. We compare results for TP=1 and TP=20.

The two-particle momentum-di↵erence distribution dNpairs/d�p can be calculated

event-by-event by binning the momentum di↵erence between all pairs of baryons a and

b in the event,

�pab ⌘ 1
2 |p

a � p
b| (4.1)

= 1
2

h
(pax � pbx)

2 + (pay � pby)
2 + (paz � pbz)

2
i 1

2
.

The quantity�pab is equal to the momentum of each of the two particles as measured in

the rest frame of the pair. An earlier study [51] considered a somewhat similar observable,

namely the average kinetic energy of each particle in an N -body cluster and found that

the signal-to-background grows stronger as the cluster size N is increased but, at the same

time, the counting rate decreases progressively. In the present exploratory study, we stick

to just two-baryon clusters.

The resulting event-averaged distributions for the spinodal and Maxwell cases are

shown in the upper panel of Fig. 5, while the relative di↵erence of these distributions is

shown in the lower panel of Fig. 5. It should be noted that this distribution gives identical

results for di↵erent numbers of test particles, but the amount of event-by-event noise is

larger when the number of test particles is small. The relative di↵erence of these baryon

pair distributions is small, but appears systematic. In the spinodal case, intermediate-

momentum di↵erences (�p < 0.5 GeV) are preferred, while large-momentum di↵erences are

suppressed. In order to find out whether these small di↵erences can be used to distinguish

the event classes, we will employ a fully connected neural network for classification. This

network structure is chosen due to the simpler input data, namely the dN/d�p distribution,

which is a 200-bin dataset. After training both the TP=1 and TP=20 datasets, we find that

indeed the neural network performs better than on the pure {px, py} spectra. However
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Figure 3. Training and validation accuracy for the Convolutional Neural Network (CNN) with
coordinate-space input. After about 5 epochs the network starts over-fitting. Nevertheless, a good
accuracy of about 95% can be achieved without optimization of the network structure.

represent di↵erent supervised learning approaches. The first one is a convolution neural

network (CNN), where event-by-event images of the density distribution in coordinate as

well as momentum space serve as input. CNNs are used successfully in pattern recognition

tasks in image applications. The second model is a point cloud network (PCN) [49],

whose inputs are lists of discrete particle properties, e.g. particle four-momenta for every

individual particle in a single event. The PCN is well suited for dealing with particles from

collision experiments because it can use the momentum information for discrete particles

as direct input. For a short introduction on neural networks and terminology we refer to

appendix A.

The last section presents a semi-supervised learning approach, i.e. a principal compo-

nent analysis (PCA), which is used to extract the principal components of a given analysis

feature, namely the two-particle momentum di↵erence distributions (see appendix B.5 for

details on the PCA). This feature is fed to a fully connected neural network (NN) to identify

the EoS. The PCA yields a slightly improved accuracy.

4.1 Coordinate space

In a first step, we test the neural network for the coordinate clumping as expected from the

spinodal equation of state: About 20 000 Pb+Pb collision events are generated at a (typical

FAIR/GSI) beam energy of Elab = 3.5A GeV, for each EoS. We know from previous studies

of the moments of the density distribution [35] that the density fluctuations in coordinate

space are strongest at t =3 fm/c 1 at this beam energy and subside after another 3 fm/c.

Thus we stop the time evolution of the system at the point in time where the density

fluctuations are expected to be strongest, at t =3 fm/c. From each event an ’image’ is then

generated, containing information on the net baryon density distribution in the transverse

1The precise value of the optimal energy, Elab = 3.5GeV, depends somewhat on the specific equation of

state employed, so others would yield di↵erent values.
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Coordinate space 🙂 Momentum space ☹

Steinheimer et al. , arXiv:1906.06562



Summary
• Cumulants measure derivatives of the free energy (equation 

of state) 
- Sensitive to “wiggles” a.k.a. “remnants” of phase transition 

• Experiments are difficult: detector needs to be understood 
well   

• Careful when comparing theory with measured cumulants 
• Correlations a.k.a. factorial cumulants provide 

complementary insights 
- strong four particle correlation at low energies 

• Don’t forget the first order phase transition 
- Spinodal instability 

• Very active field, both in experiment and theory

92

VERY INTERESTING TIMES ADHEAD


