NuclearScience Computing CenteratCCNU

New Developments in Lattice QCD

Heng-Tong Ding (丁亨通)

Central China Normal University (华中师范大学)

I /2I

arXiv:1504.05274

Sign Problem at $\mu_{\rm B}$ =/=0

Taylor Expansion

Imaginary μ_B

STAR data: X.F. Luo, 1503.02558, X.F. Luo and N. Xu, 1701.02105

QCD criticality at $\mu_B=0$: relevance to CEP

[1]F. Karsch et al., Nucl. Phys. Proc. Suppl. 129 (2004) 614 [2] P. de Forcrand et al, PoS LATTICE2007 (2007) 178 [3]D. Smith & C. Schmidt, PoS LATTICE2011 (2011) 216 [4]Endrodi et al., PoS LAT2007 (2007) 228 [5] Bazavov et al., PRD95 (2017) 074505 [6]Nakamura et al., PRD92 (2015) 114511 [7] Jin et al., PRD96 (2017) 034523, 1909. 05441

> Not relevant: 1st order chiral phase transition region as it becomes small and is away from the physical point See more about U_A(1) at T=/=0: H. Fukaya EPJ Web Conf. 175 (2018) 01012, Lattice 2017

Relevant: 2nd order chiral phase transition belonging to O(4) universality class as axial U(1) symmetry is not effectively restored at the critical temperature ($\chi_{l,disc} \neq 0$)

QCD phase diagram in 3D: quark mass, μ_B , T

 T_{pc} : 156.5(1.5)MeV, chiral crossover T at $\mu_B=0$

Patrick Steinbrecher, QM2018, Bazavov et al., [HotQCD] Phys. Lett. B795 (2019) 15

- T_c^{CEP} : transition T at the critical end point
- T_c^0 : chiral phase transition T at m_q=0 and $\mu_B=0$
- T_c^{tri} : transition T at the tri-critical point
- Random Matrix Model & NJL suggests:
 - $T_c^{tri} T_c^{CEP}(m_q) \propto m_q^{2/5}$

Y. Hatta & T. Ikeda, PRD67 (2003) 014028
M. A. Halasz et al, PRD 58 (1998) 096007
M. Buballa, S. Carignano, PLB791(2019)361

 $I_{c}^{0}(\mu_{B})$ decreases as μ_{B} up to NLO from LQCD

O. Kaczmarek et al., PRD83 (2011) 014504 P. Hegde & HTD, PoS LATTICE2015 (2016) 141

QCD phase diagram in 3D: quark mass, μ_B , T

 T_{pc} : 156.5(1.5)MeV, chiral crossover T at $\mu_B=0$

Patrick Steinbrecher, QM2018, Bazavov et al., [HotQCD] Phys. Lett. B795 (2019) 15

- T_c^{CEP} : transition T at the critical end point
- T_c^0 : chiral phase transition T at m_q=0 and $\mu_B=0$
- T_c^{tri} : transition T at the tri-critical point
- Random Matrix Model & NJL suggests:
 - $T_c^{tri} T_c^{CEP}(m_q) \propto m_q^{2/5}$

Y. Hatta & T. Ikeda, PRD67 (2003) 014028
M. A. Halasz et al, PRD 58 (1998) 096007
M. Buballa, S. Carignano, PLB791(2019)361

 ${\bf J}_{c}^{0}(\mu_{B})$ decreases as $\mu_{\rm B}$ up to NLO from LQCD

 $T_c^0 > T_c^{tri} > T_c^{CEP}$

O. Kaczmarek et al., PRD83 (2011) 014504 P. Hegde & HTD, PoS LATTICE2015 (2016) 141

Infinite volume & chiral extrapolation

Continuum extrapolat

thermodynamic, continuum & chiral extrapolated

e.g. J. Berges, D. U. Jungnickel and C. Wetterich, Phys. Rev. D59, 034010 (1999) J. Braun, B. Klein, H.-J. Pirner and A. H. Rezaeian, Phys. Rev. D73, 074010 (2006)

High order fluctuations & critical behavior

$\chi_{lmn}^{BQS} \equiv \chi_{lmn}^{BQ}(T) = \frac{\partial^{l+m+n} P(T,\hat{\mu})/T^4}{\partial \hat{\mu}_B^l \partial \hat{\mu}_Q^m \partial \hat{\mu}_S^n} \Big|_{\hat{\mu}=0}$

Many 8th order fluctuations turn to be negative at T ≥ 135-140 MeV

Suggests zeros in the complex plane: no phase transition in the above T window

Supports for $T_c^{CEP} < 135 - 140 \text{MeV} \sim T_c^0$

Singularity in the complex plane: Radius of convergence in μ_B

Idea testing on Nt=4 coarse lattices using 2-stout improved staggered fermions

M. Giordano & A. Pasztor, PRD99(2019)114510

Try to have a direct determination of the leading singularity of the pressure, i.e. the closest Lee-Yang zero, via reweighting to a complex chemical potential

> Attila Pasztor 12:20 Wed

7 /21

Singularity in the complex plane: Radius of convergence in μ_B based on O(4) universality and LQCD results on chiral phase transition Universal parameters: O(4) critical exponents, scaling functions Scaling functions: singularity in the complex plane—Lee-Yang edge singularity The singularity limits the convergence of the Taylor series in μ_B Non-universal parameters: LQCD-determined chiral phase transition T_c°, curvature of transition line

S. Mukherjee & V. Skokov, arXiv:1909.04639

Vladimir Skokov 16:40 Wed

Imaginary µ_B, Ruben Kara [Wuppertal-Budapest], Poster

Strength of QCD transition does not increase at all up to μ_B~300 MeV

Lattice data suggests $T_{c}^{CEP} < 135 - 140 { m MeV}$ $\mu_B^{CEP} > 300 \text{MeV}$

Bazavov, HTD, P. Hegde et al. [HotQCD], Phys. Lett. B795 (2019) 15

Similar chiral crossover line: see from Jana Guenther, 11:40 Tue

Chiral crossover line: $T_{pc}(\mu_B) = T_{pc}(0) \left(1 - \kappa_2 \left(\frac{\mu_B}{T}\right)^2 - \kappa_4 \left(\frac{\mu_B}{T}\right)^4\right)$

ALICE data point: $T_f = 156.5(1.5) MeV$

Andronic et al, Nature 561 (7723) (2018) 321

STAR data points:

Adamczyk et al., Phys. Rev. C 96 (4) (2017) 044904

HIC mean: M_x variance: σ_x^2 skewness: S_x kurtosis: κ_{x} hyper-skewness: S_x^h hyper-kurtosis: κ_x^h

Proxies:

proton, charge particles,

kaons

 $\frac{M_x(\sqrt{s})}{\sigma_x^2(\sqrt{s})} = \frac{\langle N_x \rangle}{\langle (\delta N_x)^2 \rangle} =$ $\frac{S_x(\sqrt{s})\,\sigma_x^3(\sqrt{s})}{M_x(\sqrt{s})} = \frac{\left\langle (\delta N_x)^3 \right\rangle}{\left\langle N_x \right\rangle}$ $\kappa_x(\sqrt{s}) \, \sigma_x^2(\sqrt{s}) = \frac{\langle (\delta N_x)^4 \rangle}{\langle (\delta N_x)^2 \rangle}$ $\frac{S_x^h(\sqrt{s})\,\sigma_x^5(\sqrt{s})}{M_x(\sqrt{s})} = \frac{\left\langle (\delta N_x)^5 \right\rangle}{\langle N_x \rangle} =$

 $\kappa_x^h(\sqrt{s}) \, \sigma_x^4(\sqrt{s}) = \frac{\langle (\delta N_x)^6 \rangle}{\langle (\delta N_x)^2 \rangle}$

Explore the QCD phase diagram through fluctuations of conserved charges x=B,Q,S

$$=\frac{\chi_1^x(T,\mu_B)}{\chi_2^x(T,\mu_B)}=R_{12}^x(T,\mu_B)$$

$$= \frac{\chi_3^x(T,\mu_B)}{\chi_1^x(T,\mu_B)} = R_{31}^x(T,\mu_B)$$

$$= \frac{\chi_4^x(T,\mu_B)}{\chi_2^x(T,\mu_B)} = R_{42}^x(T,\mu_B)$$

$$LQCD$$
generalized susceptibility
 $\chi_n^x(T,\mu_B) = \frac{1}{VT^3} \frac{\partial^n \ln Z(T,\mu_B)}{\partial (\mu_x/2)}$

$$\frac{\chi_5^x(T,\mu_B)}{\chi_1^x(T,\mu_B)} = R_{51}^x(T,\mu_B)$$

$$\frac{\chi_6^x(T,\mu_B)}{\chi_2^x(T,\mu_B)} = R_{62}^x(T,\mu_B)$$

12/21

Detector effects: cuts in acceptance & kinematics...

Final-state interactions in the hadronic phase J.Steinheimer et al., PRL (2013)...

Many caveats

Non-equilibrium effects

S. Mukherjee, R. Venugopalan, Yi Yin PRL(2016)....

Proton v.s. Baryon

M. Kitazawa and M. Asakawa, PRC(2012)...

V. Koch, S. Jeon, PRL (2000) A.Bzdak, V.Koch, PRC (2012) V. Skokov et al., PRC (2013)...

... ...

Final-state interactions in the hadronic phase J.Steinheimer et al., PRL (2013)...

Many caveats

Non-equilibrium effects

S. Mukherjee, R. Venugopalan, Yi Yin PRL(2016). ...

Proton v.s. Baryon

M. Kitazawa and M. Asakawa, PRC(2012)...

Detector effects: cuts in acceptance & kinematics...

V. Koch, S. Jeon, PRL (2000) A.Bzdak, V.Koch, PRC (2012) V. Skokov et al., PRC (2013)...

... ...

Baseline from thermal equilibrated QCD

Comparison to Hadron Resonance Gas Model (HRG)

See various 2nd & 4th order cumulant ratios in Jishnu Goswami's Poster

At T~T_{pc} ideal HRG describes cumulants up to 2nd order at $\mu_B \leq 120$ MeV QM-HRG needed to describe 2nd cumulant ratios where e.g. Not-PDG-listed Ş strange-baryons' contributions manifest An ideal HRG cannot describe cumulants for >2nd orders Ş \leq Cumulant ratios at $\mu_B=0$: contact to ALICE data interesting Anar Rustamov Plenary Wed, Mesut Arslandok 11:00 Tue

diagonal correlations, see also Bellwied et al., 1910.14592

See modified versions of HRG e.g.: Alba & Liva PRC19', Aarts et al., PRD19', Dash et al., PRC19', Lo et al., PLB18', Huovinen & Petreczky PLB18', Vovchenko et al., PRL 17', PRC 17'...

14/21

QCD v.s. Experimental data: skewness (R₃₁) & kurtosis (R₄₂) ratios

Bands in QCD: chiral crossover T region

$$T_{pc}(\mu_B) = T_{pc}(0) \left(1 - \kappa_2 \left(\frac{\mu_B}{T}\right)^2 - \kappa_4 \left(\frac{\mu_B}{T}\right)^4 \right)$$

Dennis Bollweg 17:50 Wed

QCD v.s. Experimental data: skewness (R₃₁) & kurtosis (R₄₂) ratios

Bands in QCD: chiral crossover T region

 $T_{pc}(\mu_B) = T_{pc}(0) \left(1 - \kappa_2 \left(\frac{\mu_B}{T}\right)^2 - \kappa_4 \left(\frac{\mu_B}{T}\right)^4 \right)$

 $\sqrt{s_{NN}}=54.4$ GeV data points fall on the fits to the old data

QCD v.s. Experimental data: skewness (R₃₁) & kurtosis (R₄₂) ratios

Consistency of √s_{NN}=54.4 GeV data with QCD at T=155-158 MeV

 $\sqrt{s_{NN}}=54.4$ GeV data points fall on the fits to the old data

QCD v.s. Experimental data:Dennis Bollweg 17:50 Wedskewness (R31) & kurtosis (R42) ratios

Consistency of √s_{NN}=54.4 GeV data with QCD at T=155-158 MeV

 $\sqrt{s_{NN}}=54.4$ GeV data points fall on the fits to the old data

QCD v.s. Experimental data:Dennis Bollweg 17:50 Wedskewness (R31) & kurtosis (R42) ratios

Consistency of √s_{NN}=54.4 GeV data with QCD at T=155-158 MeV

 $\sqrt{s_{NN}}=54.4$ GeV data points fall on the fits to the old data

At fixed R₁₂, R₃₁ & R₄₂ increase with decreasing T

QCD v.s. Experimental data:Dennis Bollweg 17:50 Wedskewness (R31) & kurtosis (R42) ratios

Consistency of √s_{NN}=54.4 GeV data with QCD at T=155-158 MeV

√s_{NN}=54.4 GeV data points fall on the fits to the old data At fixed R₁₂, R₃₁ & R₄₂ increase with decreasing T Inconsistency of T_f=165(4) MeV from yields and their ratios at $\sqrt{s_{NN}=200 \text{ GeV}}$

Statistics ? Non-equilibrium?...?

LQCD: Both hyper-skewness and hyper-kurtosis are negative down to vsnn=39 GeV Nice consistency seen in skewness & kurtosis at $\sqrt{s_{NN}=54.4}$ GeV with QCD

Excited bottomonia up to 3S and 2P NRQCD, 48³x12 lattices, Ist lattice QCD study of up to 3S and 2P bottomonia

Thermal width extracted from temporal correlators: $T < \Gamma_{\chi_{b0}(1P)}(T) < \Gamma_{\Upsilon(2S)}(T) < \Gamma_{\chi_{b0}(2P)}(T) < \Gamma_{\Upsilon(3S)}(T)$ Compatible to Sequential dissociation picture

More news about Quarkonia from LQCD see Alexander Rothkopf Plenary Fri

Fate of J/W and Y

Quenched QCD, 1st continuum extrapolated results

e.g. T=1.1 T_c continuum extrapolation based on 192^3x64 , 144^3x48 , 120^3x40 , 96^3x32 lattices

At T>=1.1T_c: No resonance peaks of J/ Ψ is needed At T>=1.5T_c: No resonance peaks of Y is needed

More news about Quarkonia from LQCD see Alexander Rothkopf Plenary Fri

Broken lines: spectral function (SPF) from pNRQCD

Solid lines fit to difference of neighboring temporal correlators using pNRQCD +cont SPF as a ansatz

pNRQCD fits to Pseudo-scalar correlators Burnier et al., JHEP11(2017)206

Olaf Kaczmarek 14:40 Tue

$SU_L(2)xSU_R(2)$ and $U_A(1)$ Symmetries Continuum extrapolated results in 2+1 flavor QCD with $m_{\pi}=140$ MeV

Meson screening masses

SU_L(2)xSU_R(2) chiral symmetry: Degeneracy of Vector and Axial Vector at T=T_{pc} Axial U(1) symmetry: Degeneracy of Pseudo scalar and Scalar at T-200 MeV [HotQCD] arXiv:1908.09552 [hep-lat]

U_A(1) susceptibility

Summary

possible critical end point can located only at $T_{c}^{CEP} < 135 - 140 \text{MeV}$ $\mu_{B}^{CEP} > 300 \text{MeV}$

- yper-skewness and hyper-kurtosis ratios are obtained in NLO in μ_B
 - $\sqrt{S_{NN}=200 \text{ GeV}}$: $R_{51}^B = -0.5(3), R_{62}^B = -0.7(3)$
 - $\sqrt{S_{NN}}=54.4 \text{ GeV}: R_{51}^B = -0.7(4), R_{62}^B = -2(1)$

as heavy quark transports

 \therefore Negative 6th and 8th order cumulants as well as T_c°~132 MeV suggests a

Great progress achieved in understanding the fate of quarkonia states as well

21/21